Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Decoding subcellular spatial biology with high precision using RNA photocatalysts

Project description

Innovative technology for RNA deciphering

RNA plays a vital role in molecular interactions across all forms of life and is essential for maintaining cellular homeostasis. Its complex, spatial, and dynamic networks are key to numerous biological processes, with disruptions in RNA interactomes being linked to various human diseases. Despite RNA research, progress in discovering and characterising RNA interactions at the transcriptome level has been slow. The ERC-funded RNAPhotoCat project aims to address this challenge by developing a cost-efficient, high-accuracy, simple, and versatile technology. Using biRhoBAST aptamers and photocatalytic proximity labelling, this technology will enable the precise identification of RNA-RNA and RNA-protein interactions. This is expected to enhance our understanding of RNA interactomes, paving the way for critical advancements in numerous fields.

Objective

RNA is a fundamental component of life. Complex, dynamic, and spatial networks of molecular interactions between RNAs and other biomolecules are essential for maintaining cellular homeostasis. Disruptions in the RNA interactome have been linked to a number of human diseases, implying that these molecular interactions could represent a new family of unexploited therapeutic targets. Despite the growing appreciation of the importance of RNA, discovery, and characterization of RNA interactions at the transcriptome level is lagging behind, mainly due to the limitations of the existing methods including low precision, low throughput, low coverage, biased analysis, complicated protocols involving cumbersome biochemical fractionation or cell-line engineering. With the present technology, many more years may pass before a comprehensive list of their functions, localizations, and interactions can be assembled, considering the immense size and complexity of the human transcriptome and RNA interactome.
This ERC project aims to establish a simple, versatile, and low-cost technology based-on photocatalytic proximity-labeling and the biRhoBAST aptamer for deciphering RNA-RNA and RNA-protein interactions with high precision for any given RNA at different resolutions, ranging from single-molecule to macromolecular complex level. Owing to its innovative design, this technology will seamlessly integrate with advanced super-resolution RNA imaging techniques, providing valuable insights into the intricate interaction networks of RNA with high temporal and spatial resolution. By applying this massively multiplexable technology to numerous biological settings and disease-related RNAs, we will expand our understanding of interactomes, uncover new insights into subcellular RNA structures and unravel fundamental molecular mechanisms of RNA diseases, leading to the discovery of novel functions for both RNA and proteins, and potentially unlocking new therapeutic targets.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-COG

See all projects funded under this call

Host institution

RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 999 525,00
Address
SEMINARSTRASSE 2
69117 Heidelberg
Germany

See on map

Region
Baden-Württemberg Karlsruhe Heidelberg, Stadtkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 999 525,00

Beneficiaries (1)

My booklet 0 0