Project description
Innovative technology for RNA deciphering
RNA plays a vital role in molecular interactions across all forms of life and is essential for maintaining cellular homeostasis. Its complex, spatial, and dynamic networks are key to numerous biological processes, with disruptions in RNA interactomes being linked to various human diseases. Despite RNA research, progress in discovering and characterising RNA interactions at the transcriptome level has been slow. The ERC-funded RNAPhotoCat project aims to address this challenge by developing a cost-efficient, high-accuracy, simple, and versatile technology. Using biRhoBAST aptamers and photocatalytic proximity labelling, this technology will enable the precise identification of RNA-RNA and RNA-protein interactions. This is expected to enhance our understanding of RNA interactomes, paving the way for critical advancements in numerous fields.
Objective
RNA is a fundamental component of life. Complex, dynamic, and spatial networks of molecular interactions between RNAs and other biomolecules are essential for maintaining cellular homeostasis. Disruptions in the RNA interactome have been linked to a number of human diseases, implying that these molecular interactions could represent a new family of unexploited therapeutic targets. Despite the growing appreciation of the importance of RNA, discovery, and characterization of RNA interactions at the transcriptome level is lagging behind, mainly due to the limitations of the existing methods including low precision, low throughput, low coverage, biased analysis, complicated protocols involving cumbersome biochemical fractionation or cell-line engineering. With the present technology, many more years may pass before a comprehensive list of their functions, localizations, and interactions can be assembled, considering the immense size and complexity of the human transcriptome and RNA interactome.
This ERC project aims to establish a simple, versatile, and low-cost technology based-on photocatalytic proximity-labeling and the biRhoBAST aptamer for deciphering RNA-RNA and RNA-protein interactions with high precision for any given RNA at different resolutions, ranging from single-molecule to macromolecular complex level. Owing to its innovative design, this technology will seamlessly integrate with advanced super-resolution RNA imaging techniques, providing valuable insights into the intricate interaction networks of RNA with high temporal and spatial resolution. By applying this massively multiplexable technology to numerous biological settings and disease-related RNAs, we will expand our understanding of interactomes, uncover new insights into subcellular RNA structures and unravel fundamental molecular mechanisms of RNA diseases, leading to the discovery of novel functions for both RNA and proteins, and potentially unlocking new therapeutic targets.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences catalysis photocatalysis
- natural sciences biological sciences biochemistry biomolecules
- natural sciences physical sciences optics microscopy super resolution microscopy
- natural sciences biological sciences genetics RNA
- medical and health sciences basic medicine physiology homeostasis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
69117 Heidelberg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.