Descrizione del progetto
Micrometeoriti del Fanerozoico: una finestra sul flusso di polvere cosmica
Le micrometeoriti, minuscole particelle di detriti del sistema solare che cadono sulla Terra, provengono principalmente da asteroidi e comete. Fino a poco tempo fa si riteneva che non sopravvivessero nelle rocce geologiche della Terra. Per questo motivo, gli sforzi per comprendere il flusso di polvere cosmica nel tempo si sono basati su altri campioni o strumenti di modellizzazione. Il progetto FLUX, finanziato dal CER, cercherà di estrarre micrometeoriti fossili da intervalli stratigrafici selezionati nel Fanerozoico, da circa 540 milioni di anni fa a oggi. Il lavoro si basa sui rivoluzionari studi «proof-of-concept» condotti dal ricercatore principale su intervalli stratigrafici selezionati a partire da circa 400 milioni di anni fa. Si cercherà quindi di utilizzare le micrometeoriti fossili come proxy delle interazioni dinamiche tra sistema solare e Terra.
Obiettivo
For the last 4.5 billion years, extraterrestrial (ET) materials have continuously bombarded the Earth. Today, the Solar System debris that reaches the Earth’s surface is dominated by particles less than 2 mm in size, termed micrometeorites (MMs). Until recently, the established misconception was that these MMs did not survive geological timescales, limiting reconstructions of the dust flux through time that are currently based on finding rare relict mineral phases or applying geochemical tools (e.g. Ir contents, 3He isotope ratios). Following a successful proof-of-concept study on a Late Devonian section, FLUX proposes first to extract fossil MMs from selected stratigraphic intervals across the Phanerozoic to document their characteristics and origin and second to use them as a novel high-resolution proxy to better understand the dynamical interactions between the Solar System and Earth. As such, fossil MMs may serve as an alternative new source of information on Solar System processes, complementary to classic meteorites. By combining expertise in meteoritics, geochemistry, and chemostratigraphy, FLUX addresses the following questions: 1) How did the flux of cosmic dust evolve during the Phanerozoic? 2) Can stratigraphic intervals marked by a dramatic increase in the mass of cosmic dust accreting to the Earth be identified? 3) Do increased ET flux events reflect asteroid family-forming events in the asteroid belt between Mars and Jupiter, and are they influenced by changes in the shape of Earth’s orbit? 4) Can oxidized iron-rich MMs be used to reconstruct the gross primary productivity or atmospheric CO2 levels of the deep past? 5) Did ET flux fluctuations affect the global Earth environment, for example through ocean fertilization? Ultimately, FLUX will better position the Earth in the context of a dynamic Solar System and constrain the causes and consequences of the variations in the flux of cosmic dust to Earth.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- scienze naturaliscienze della terra e scienze ambientali connessegeochimica
- scienze naturaliscienze fisicheastronomiaplanetologiameteoriti
- scienze socialieconomia e commercioscienze economicheeconomia della produzioneproduttività
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Parole chiave
Programma(i)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Argomento(i)
Invito a presentare proposte
(si apre in una nuova finestra) ERC-2023-COG
Vedi altri progetti per questo bandoMeccanismo di finanziamento
HORIZON-ERC - HORIZON ERC GrantsIstituzione ospitante
1050 Bruxelles / Brussel
Belgio