Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Dynamic Selection and Configuration of Black-box Optimization Algorithms

Description du projet

Optimisation à boîte noire pour la biomédecine et la mécanique computationnelle

Les algorithmes d’optimisation à boîte noire sont largement utilisés pour résoudre des problèmes dans divers secteurs industriels et domaines universitaires. Compte tenu de leur importance, de nombreux algorithmes présentant des forces et des faiblesses distinctes ont été développés. Le projet dynaBBO, financé par le CER, vise à améliorer les techniques d’optimisation à boîte noire en passant dynamiquement d’un algorithme à l’autre en temps réel. Il aborde deux questions de recherche: quand changer d’algorithme et comment démarrer à chaud le solveur sélectionné pour maintenir une recherche efficace. Le projet intègre des connaissances sur les algorithmes d’optimisation avec des techniques d’apprentissage automatique pour concevoir des méthodes de sélection et de configuration d’algorithmes basées sur la trajectoire. Les résultats seront validés dans des applications de biomédecine et de mécanique informatique.

Objectif

"Black-box optimization algorithms are among the most widely applied optimization techniques in practice, used to solve numerous problems across a broad range of industrial branches and academic disciplines every day. Given this importance, it is not surprising that a plethora of different black-box optimization algorithms exist, complementing each other in strengths and weaknesses.

In the dynaBBO project, we set out to obtain more efficient black-box optimization techniques by leveraging this complementarity, both with respect to different problem instances and with respect to different stages of the optimization process. To this end, we will develop approaches that select and dynamically switch between different black-box optimization algorithms ""on the fly"".

The two key research questions that guide our project are (1) when to switch from one algorithm to another, and (2) how to warm-start the selected solver so that it can continue the search as effectively as possible. Both questions are largely under-explored and are handled rather naively in practice.

To obtain our dynamic approaches, we intertwine insights about black-box optimization algorithms, obtained through rigorous theoretical analyses, with automated machine learning techniques. In particular, we will design trajectory-based algorithm selection and configuration techniques that combine exploratory landscape analysis with newly designed algorithm features that capture information about the solver-instance interaction. We compare the efficiency of these feature-based approaches with deep learning techniques, reinforcement learning, and approaches based on hyperparameter optimization.

We will further increase our project's impact by validating its results on applications in bio-medicine and in computational mechanics."

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2023-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 999 975,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 999 975,00

Bénéficiaires (1)

Mon livret 0 0