Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

The Interplay of Aging, Immune Signaling and Stem Cell Function

Project description

Studying immune signals and muscle ageing

Ageing leads to the decline of tissue renewal and repair, partly due to impaired stem cell (SC) function. Changes in the immune environment are emerging as key contributors to this decline, yet their impact on SC dysfunction remains unclear. With this in mind, the ERC-funded immSC-AgingFate project is exploring how immune alterations contribute to age-related muscle stem cell (MuSC) dysfunction. By studying the immune signals affecting MuSC plasticity and lineage commitment, the team aims to uncover how these changes lead to impaired muscle regeneration. This research will also investigate the underlying epigenetic changes and potential transcriptional regulators of MuSC fate, with the ultimate goal of improving MuSC-based therapies for age-related muscle disorders.

Objective

Adult stem cells (SCs) sustain tissue renewal and repair throughout life. The SC niche is fundamental in the regulation of SC function and an important contributor to SC decline in aging. While alterations in the tissue’s immune environment are emerging as important contributors to impairments found in aged organs, their contribution to SC dysfunction in aging is unknown.
The skeletal muscle (SkM) is a paradigmatic model to study age-related loss of repair capacity. Muscle stem cell (MuSC) function during regeneration requires plasticity in transit between states of quiescence, activation and differentiation. MuSC functional impairments in aging result from changes in the extrinsic cues that govern their behavior, but also cell intrinsic alterations, including senescence and defects in lineage commitment. However, we still have a limited understanding of how changes in the environment manifest as SC intrinsic defects.
Our previous work indicates that changes in immune signaling are important drivers of MuSC dysfunction and regenerative decline in aging. Here, we propose to identify the contribution of specific immune populations and signals to changes in regenerative capacity and MuSC activity in aging (Aim 1). We hypothesize that the immune environment is an essential regulator of MuSC plasticity and lineage commitment under regenerative pressure, and immune alterations underlie defects in MuSC lineage fidelity in aging. We propose to map the trajectories of MuSCs diverging from the myogenic lineage and uncover the changes in epigenetic landscape that underlie the loss of lineage fidelity associated with immune aging, identifying transcriptional regulators of MuSC fate (Aim 2). The knowledge generated on the mechanisms linking immune aging and MuSC dysfunction will be tested for the conservation in human SkM and will be applied to improve the success of MuSC-based therapies in aging (Aim 3).

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-COG

See all projects funded under this call

Host institution

FUNDACAO GIMM - GULBENKIAN INSTITUTE FOR MOLECULAR MEDICINE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 998 843,00
Address
AVENIDA PROFESSOR EGAS MONIZ
1649-035 LISBOA
Portugal

See on map

Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 998 843,00

Beneficiaries (1)

My booklet 0 0