Project description
Non-alcoholic steatohepatitis: role of endothelial cells in progression to cancer
Non-alcoholic steatohepatitis (NASH) is a type of non-alcoholic fatty liver disease associated with fat build-up, inflammation and liver damage. It is dangerously progressive and a major risk factor for hepatocellular carcinoma. Changes in the gut–liver axis and in the organisation of liver cells play a role in the progression of NASH to hepatocellular carcinoma. These may be mediated by the single layer of endothelial cells lining the blood vessels that regulates the exchange of substances between the bloodstream and surrounding tissues. The ERC-funded CONNASHION project will investigate this using novel spatial sorting strategies together with advanced transcriptomics, phosphoproteomics and imaging to better understand protein signalling in the liver vasculature.
Objective
Non-alcoholic steato-hepatitis (NASH) is a major risk factor for hepatocellular carcinoma (HCC), the 6th most common cause of cancer-related death worldwide. The transition among different NASH stages to HCC stems from the complex interaction of multiple factors, including gut-liver axis modifications and a progressive dis-architecture of the liver parenchyma.
The central role of endothelial cells in regulating the metabolic crosstalk along the gut-liver axis and in shaping the spatial organization of the liver parenchyma suggests a potential vascular control of NASH progression. However, the possibility to precisely define the endothelial contribution is restrained by the limited ability to correlate gene expression profiling and functional readout, such as protein phosphorylation, with the complex morphological modifications occurring during NASH.
To overcome these limitations, we combined innovative “spatial sorting” strategies with transcriptomics and quantitative phosphoproteomics, providing the first draft of the anatomical organization of proteins signaling in the liver vasculature. Moreover, we unambiguously identified tyrosine phosphorylation – the main target of the anti-angiogenic therapy (ATT) – as one of the most spatially regulated signaling event.
Building on this expertise, we will combine spatial sorting strategies in gut and liver with mouse models of NASH progression and advanced imaging modalities to pursue the following aims:
1. Provide a spatiotemporal characterization of the gut and liver vasculature undergoing NASH development.
2. Dissect the vascular determinants of NASH progression.
3. Identify the molecular mechanisms underlying the synergistic effect between AAT and immune checkpoint
inhibition.
Together, our results will lay the foundation for understanding the molecular basis of a synergistic AAT and immune therapy in HCC, and help to identify novel prognostic markers as well as potential therapeutic targets.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20132 Milano
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.