Descrizione del progetto
Ampliare le conoscenze sulla riprogrammazione nelle microspore vegetali
La totipotenza, una caratteristica spesso riscontrata nelle cellule germinali come le microspore, potrebbe essere una chiave cruciale nella riprogrammazione delle microspore vegetali. Tuttavia, nonostante la sua importanza in vari organismi e processi, la totipotenza non è del tutto compresa. Il progetto MagicSpore, finanziato dal CER, intende utilizzare il germe maschile di Arabidopsis per studiare la riprogrammazione epigenetica e la totipotenza germinale nelle microspore vegetali, rivoluzionando così la nostra comprensione della totipotenza cellulare e della riproduzione sessuale delle piante. Per raggiungere questo obiettivo, il progetto farà leva su recenti scoperte, come l’assenza di specifiche modifiche degli istoni nelle microspore, e impiegherà nuove tecnologie per indagare le basi epigenetiche della totipotenza delle microspore e il loro scopo biologico.
Obiettivo
How totipotency is established in germ cells is an essential question in reproductive biology. In the plant male germline, the haploid meiotic products microspores are totipotent, which permits crop breeding via microspore embryogenesis. However, the molecular basis and biological significance of microspore totipotency are unknown. More generally, our understanding of plant cell totipotency is in its infancy.
My lab established the Arabidopsis male germline as a model to study germline epigenetic reprogramming. We recently discovered that H3K27me3, a histone modification essential for developmental regulation, is globally erased in microspores. We also identified a new family of histone H2A deubiquitinases (GDUs), and our results suggest that the GDUs and a histone H3 variant (H3.15) gradually remove H3K27me3 during microspore development. I hypothesize that global H3K27me3 erasure facilitates the diploid to haploid transcriptional shift, establishes cellular totipotency, and allows the two identical sperm cells within a pollen grain to initiate the development of distinct seed structures (embryo and endosperm).
We will leverage our recent discoveries, as well as state-of-the-art technologies, to study in-depth the epigenetic basis of microspore totipotency and its biological functions, via these aims:
1) determine the timing, scope and functions of H3K27me3 reprogramming in microspores;
2) understand the role of histone H3.15 and GDUs in H3K27me3 reprogramming;
3) alter microspore regeneration ability by manipulating H3K27me3 reprogramming;
4) elucidate the contribution of global H3K27me3 erasure to double fertilization.
Our outputs will revolutionize our understanding of plant cellular totipotency and sexual reproduction, and elucidate novel strategies to enhance microspore embryogenesis in recalcitrant crops. These insights will in turn reveal core principles governing epigenetic regulation of sexual reproduction in eukaryotes.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- scienze agricoleagricoltura, silvicoltura e pescaagricolturacereali e semi oleosi
- scienze naturaliscienze biologichebiologia dello sviluppo
- scienze agricoleagricoltura, silvicoltura e pescaagricolturaagronomiamiglioramento delle piante
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Parole chiave
Programma(i)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Argomento(i)
Meccanismo di finanziamento
HORIZON-ERC - HORIZON ERC GrantsIstituzione ospitante
3400 Klosterneuburg
Austria