Project description
Exploring the universal traits of isolated quantum systems
Recent findings in quantum dynamics reveal that isolated quantum systems, when disturbed from equilibrium, demonstrate universal properties that align with random matrix theory. This interplay between universality and specificity is evident in the statistical properties of energy spectrums, Hamiltonian eigenfunctions and observable expectation values. While all these are universal, they also bear unique signatures of a given system’s non-universal aspects. These indicators also signal the approach of phase transitions. The ERC-funded Boundary project suggests that the critical properties at these transitions may exhibit their own universal traits, distinct from conventional random matrix theory predictions. Boundary will forge a phenomenological theory of ergodicity breaking transitions, investigating how dimensionality, symmetries and interaction types influence the universal properties of these transitions across various quantum systems.
Objective
Physical systems are both universal and special, depending on the physical property under consideration and the corresponding scale, such as the energy, time, or length scale. From the perspective of quantum dynamics, it has been recently established that the ability of isolated quantum systems to thermalize after being driven away from equilibrium is related to the emergence of universal properties that comply with random matrix theory. Specific indicators for the onset of ergodicity and quantum chaos are related to the statistical properties of energy spectrum, Hamiltonian eigenfunction properties, and the expectation values of observables in these states. At the same time, however, these indicators also carry fingerprints of nonuniversal properties of a given system. Remarkable examples of the latter include, e.g. information on the nature of energy and charge transport, and the scaling of characteristic relaxation times. One of the main conjectures of this ERC project is that these indicators, despite complying with the universal predictions of the random matrix theory, also carry information about proximity of phase transitions. Here we focus on ergodicity breaking phase transitions, which represent a novel type of phase transitions at the boundaries of quantum chaos. We then extend the scope of the project to the critical properties at the ergodicity breaking transitions. We conjecture that they also exhibit certain universal properties, yet likely different from those described by the conventional random matrix theory. The outcome of the project is to establish a phenomenological theory of ergodicity breaking transitions that applies to a broad class of quantum systems, and to clarify the impact of dimensionality, symmetries, the nature of interactions, and other mechanisms on universal properties of ergodicity breaking transitions.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1000 Ljubljana
Slovenia
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.