Project description
Taking Edge AI efficiency to a new level
The explosion of data from IoT devices, autonomous vehicles, and smart cameras has reached staggering levels (97 zettabytes in 2022 and doubling every 2-3 years). This growth strains energy consumption and bandwidth, with even advanced networks like 5G and 6G unable to keep up. Processing data locally at the Edge is crucial. Neuromorphic hardware offers a transformative solution, delivering the speed and energy efficiency traditional architectures cannot match. In this context, the EU-funded MultiSpin.AI aims to achieve unparalleled efficiency of 2 000 tetra-operations per second per watt using advanced neuromorphic AI co-processors. By enabling faster, greener Edge AI, the project paves the way for autonomous vehicles, robotics, and beyond.
Objective
The rise of technologies such as the Internet of Things (IoT), autonomous vehicles, smart cameras, etc. is generating lots of big data. The volume of data in 2022 was 97ZB and is doubling every 2-3 years. This is leading to unprecedented growth in energy consumption and costs needed for data processing. Sending raw data for remote processing on centralized nodes is limited in terms of speed and bandwidth, and even next-gen tech like 5G or 6G will be insufficient to cope with this growth. Processing data at the Edge, where it's generated, requires increasing power efficiency by several orders of magnitude. However, the use of general-purpose digital processors based on von Neumann architecture is limited, with optimization possibilities nearing natural limits.
A new class of chips, neuromorphic hardware, is needed to execute AI algorithms like Deep Learning at high speed, low energy consumption, endurance, and scalability. MultiSpin.AI’s vision is to improve neuromorphic computing by increasing the energy efficiency and processing speed by at least three orders of magnitude over digital computing and >10x compared to the most advanced neuromorphic devices to reach an unparalleled 2,000 Tera operations per second per watt (TOPS/W). To achieve this, MultiSpin.AI will develop an AI co-processor based on a crossbar of multi-level magnetic tunnel junctions (M2TJ) cells/ n-ary state cells. The use of multi-level M2TJs reduces the number of cells, simplifies circuity, and reduces the number of digital-to-analog conversions (DAC) at the input of the crossbar, and analog-to-digital conversions at the crossbar output. The combined effect is realising much higher energy efficiency and faster AI inference at the Edge. This breakthrough will help provide a significant impact by enabling transformative applications like autonomous vehicles, robots, and medical devices and help strengthen strategic autonomy for the EU chips industry and reduce CO2 emissions from AI inference.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences internet internet of things
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.3.1 - The European Innovation Council (EIC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-EIC - HORIZON EIC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-EIC-2023-PATHFINDEROPEN-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
52900 Ramat Gan
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.