Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

e-powerTrain prEdictive mAintenance using physics inforMed learnING

Description du projet

Optimisation des composants du groupe motopropulseur des véhicules électriques basée sur l’IA

Les véhicules électriques jouent un rôle crucial dans l’effort de décarbonation de l’économie. Le développement de nouveaux systèmes de diagnostic et de pronostic est essentiel pour estimer la dégradation, prévoir les défaillances et faciliter la réparabilité afin d’allonger la durée de vie des véhicules électriques. La maintenance prédictive (PdM pour «predictive maintenance») utilisant l’intelligence artificielle (IA) a suscité l’intérêt de différentes industries. Soutenu par le programme Actions Marie Skłodowska-Curie, le projet TEAMING est consacré à l’avancement des méthodes de maintenance prédictive spécifiquement pour les sous-composants du groupe motopropulseur des véhicules électriques. Le projet vise à améliorer les solutions PdM grâce à l’intégration de capteurs, de la modélisation, des jumeaux numériques, de l’IA et des méthodes d’apprentissage automatique. Grâce à des échanges internationaux de personnel, le projet cherche à optimiser les performances des composants du groupe motopropulseur des véhicules électriques.

Objectif

Mobility electrification plays a critical role in the economy decarbonisation, and we are on the edge of an industrial revolution linked to the massive deployment of the electric vehicle (EV). Their technologies readiness level has significantly increased, and the EV can now replace the thermal vehicle in terms of service provided, supporting the EU decarbonisation effort. Besides the reduction of critical material, and decrease of cost, optimising the lifetime of the EV components is essential to ease their adoption, especially the powertrain sub-components that have the major impact on EV cost and CO2 emissions. A new-generation of diagnostic and prognostic systems for the powertrain will be a game changer to ensure EV adoption, because they will estimate its degradation, anticipate failures, and ease reparability thus extending its lifespan. With significant improvement of sensors, complex modelling and data processing methods such as Artificial Intelligence (AI), predictive maintenance (PdM) has gained a lot of interest in different fields. Development of PdM methods for the sub-components of the EV powertrain (battery, fuel cell, e-motor, power electronics) is at the heart of TEAMING. Thanks to international staff exchanges, TEAMING will significantly improve the different facets of the PdM solution: sensors, modelling, Digital Twins, adapted AI, and Physics-Informed Machine Learning methods are at the centre of the studies and present a major potential in term of innovation. TEAMING will advance PdM system to better diagnose the internal physical phenomena of the different EV powertrain components and optimise their performance, lifetime, safety, and reliability.”

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-TMA-MSCA-SE - HORIZON TMA MSCA Staff Exchanges

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2022-SE-01

Voir tous les projets financés au titre de cet appel

Coordinateur

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 197 800,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Participants (9)

Partenaires (6)

Mon livret 0 0