Project description
Competitive and sustainable high-efficiency green H2 production
The push for a green transition has led to the development and the growing adoption of green technologies. Green hydrogen (H2) is one such promising solution and important energy vector and fuel for the decarbonisation of the economy. The EU-funded X-SEED project aims to develop a revolutionary alkaline membrane-less electrolyser that operates under supercritical water conditions and can produce high-quality H2 at pressures above 200 bar. This technology is expected to offer improved circularity, sustainability, longer lifespan, and maximised energy efficiency of electrolysis, enabling competitive levels of green H2 production. The project will validate at laboratory level the revolutionary electrolyser design and developed novel catalysts and electrodes through the fabrication and operation of a five-cell stack.
Objective
X-SEED aims at developing an innovative alkaline membrane-less electrolyzer that works at supercritical water conditions (>374°C; >220 bar) generating high-quality H2 at pressures over 200 bar. This technology maximizes energetic efficiency, improves circularity, and enhances lifetime, resulting in a more competitive green H2 production. X-SEED validates results at laboratory scale (TRL4) for a single cell and a 5-cell stack. Novel catalysts and electrodes are designed, synthesized, and characterized to ensure high efficiencies. Multiscale modeling and cell design ensure laminar fluid flows, allowing H2 and O2 separation without a membrane. Supercritical conditions and membrane-less configuration reduce the electrochemical work required to generate H2 (as interface resistances across cell components are decreased) and increase system lifetime. This results in an improved voltage and energy efficiency (42 kWh/kg H2), current density (> 3 A/cm2), H2 production rate and robustness (degradation rate < 1%/1000h). X-SEED also integrates circularity and sustainability assessments in decision-making, limiting the use of critical raw materials (below 0.3 mg/W) and using wastewaters both for catalyst production and as a possible electrolyte for the supercritical electrolyser. X-SEED consortium possess extensive technical knowledge and experience in key enabling technologies and areas. These will be utilized to realize multiphysics models of cell and stack (DTU, SNAM, IDN, PMat), manufacture and select the best catalyst and electrodes (LEITAT, PMAT, IDN), and design the cell, the stack, and the test bench to validate the supercritical electrolyzer at a laboratory scale (IDN, PMat, SNAM). In conclusion, X-SEED project's relevance and added value extend beyond the technological dimension: it will accelerate the H2 ecosystem, supporting Europe in meeting climate targets and maintaining its leadership position as a technological developer, producer, and exporter of green energy
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering water treatment processes wastewater treatment processes
- natural sciences biological sciences ecology ecosystems
- natural sciences chemical sciences catalysis
- natural sciences computer and information sciences computational science multiphysics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.5 - Climate, Energy and Mobility
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-JU-RIA - HORIZON JU Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-JTI-CLEANH2-2023-1
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08225 Terrassa
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.