Project description
Innovative water electrolysis for pure hydrogen production
The EU has set a target of installing at least 40 GW of renewable H2 electrolysers by 2030 as part of its Hydrogen Strategy. However, achieving this goal poses significant challenges for water-electrolysis technology. The current zero-gap alkaline water electrolysis (AWE) has the potential to be cost-effective and scalable, but it requires further optimisation in activity, stability, and gas crossover to increase efficiency and system lifetime. The EU-funded SEAL-HYDROGEN project aims to create a new AWE system that combines classic benefits with advanced innovations. The project proposes using sustainable, cost-effective, two-dimensional, layered double hydroxides (LDH) instead of noble metal-based catalysts. Its objective is to accelerate the commercial uptake of water electrolysis.
Objective
                                The EU Hydrogen Strategy sets the goal of installing at least 40 GW of renewable H2 electrolysers by 2030, which imposes significant challenges for water-electrolysis technology. Although current zero-gap alkaline water electrolysis (AWE) has potential for cost-effectiveness and scalability, it needs further optimization in activity, stability, and gas crossover to increase efficiency and system lifetime.
This project will develop a new class of AWE combining proven benefits of classic systems with cutting-edge innovations in materials science, catalyst design, and process engineering. Driven by an industrial-feasibility vision, a system that is both technically advanced and economically viable for large-scale commercial deployment is pursued. The proposed innovations include highly efficient and earth-abundant two-dimensional layered double hydroxides (LDH) obtained through a starightforward synthetic route, offering a sustainable and cost-effective alternative to noble metal-based catalysts. An innovative technology for up-scaling the production of LDH layers by direct growth of catalysts in porous transport electrodes will be implemented and explored on commercial separators. The interplay between the substrate, catalyst, and separator will be thoroughly optimized through the development of triple-phase boundary electrodes (catalyst-support-ionomer) structures with improved thermo-mechanical stability. A reliable method based on Raman spectroscopy, will be developed for the precise determination of electrode stability, offering an appropriate quality control of great interest both in research and industry. The optimal design will be assembled and tested, first in single cells of 5 cm, then in 25 cm, and finally scaled to a 6-cell stack of 300 cm, to demonstrate a next generation technology with improved performance, stability and durability, aimed to accelerate the commercial uptake of water electrolysis and turn green H2 into an economically viable solution.
                            
                                Fields of science (EuroSciVoc)
                                                                                                            
                                            
                                            
                                                CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See:   The European Science Vocabulary.
                                                
                                            
                                        
                                                                                                
                            CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences electrochemistry electrolysis
- natural sciences chemical sciences catalysis
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
                                Keywords
                                
                                    
                                    
                                        Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
                                        
                                    
                                
                            
                            
                        Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
            Programme(s)
            
              
              
                Multi-annual funding programmes that define the EU’s priorities for research and innovation.
                
              
            
          
                      Multi-annual funding programmes that define the EU’s priorities for research and innovation.
- 
                  HORIZON.2.5 - Climate, Energy and Mobility
                                      MAIN PROGRAMME
                                    
 See all projects funded under this programme
            Topic(s)
            
              
              
                Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
                
              
            
          
                      
                  Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
            Funding Scheme
            
              
              
                Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
                
              
            
          
                      Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-JU-RIA - HORIZON JU Research and Innovation Actions
See all projects funded under this funding scheme
              Call for proposal
                
                  
                  
                    Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
                    
                  
                
            
                          Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-JTI-CLEANH2-2023-1
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
46010 Valencia
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.
 
           
        