Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS

Stable and Efficient Alkaline Water Electrolyzers With Zero Critical Raw Materials for Pure Hydrogen Production

Projektbeschreibung

Innovative Wasserelektrolyse für die Erzeugung von reinem Wasserstoff

Die EU hat sich im Rahmen ihrer Wasserstoffstrategie das Ziel gesetzt, bis 2030 mindestens 40 GW an Elektrolyseuren für erneuerbares H2 zu installieren. Um dieses Ziel zu erreichen, müssen bei der Technologie für Wasserelektrolyse erhebliche Herausforderungen überwunden werden. Die derzeitige lückenlose alkalische Wasserelektrolyse birgt das Potenzial, kosteneffizient und skalierbar zu sein, erfordert jedoch weitere Optimierungen hinsichtlich Aktivität, Stabilität und Gasübergang, um die Effizienz und Lebensdauer des Systems zu erhöhen. Ziel des EU-finanzierten Projekts SEAL-HYDROGEN ist es, ein neues System zur lückenlosen alkalischen Wasserelektrolyse zu entwickeln, das klassische Vorteile mit fortgeschrittenen Innovationen verbindet. Im Rahmen des Projekts wird vorgeschlagen, anstelle von Katalysatoren auf Edelmetallbasis nachhaltige, kostengünstige zweidimensionale Doppelhydroxide zu verwenden. Das Ziel lautet, die kommerzielle Einführung der Wasserelektrolyse zu beschleunigen.

Ziel

The EU Hydrogen Strategy sets the goal of installing at least 40 GW of renewable H2 electrolysers by 2030, which imposes significant challenges for water-electrolysis technology. Although current zero-gap alkaline water electrolysis (AWE) has potential for cost-effectiveness and scalability, it needs further optimization in activity, stability, and gas crossover to increase efficiency and system lifetime.
This project will develop a new class of AWE combining proven benefits of classic systems with cutting-edge innovations in materials science, catalyst design, and process engineering. Driven by an industrial-feasibility vision, a system that is both technically advanced and economically viable for large-scale commercial deployment is pursued. The proposed innovations include highly efficient and earth-abundant two-dimensional layered double hydroxides (LDH) obtained through a starightforward synthetic route, offering a sustainable and cost-effective alternative to noble metal-based catalysts. An innovative technology for up-scaling the production of LDH layers by direct growth of catalysts in porous transport electrodes will be implemented and explored on commercial separators. The interplay between the substrate, catalyst, and separator will be thoroughly optimized through the development of triple-phase boundary electrodes (catalyst-support-ionomer) structures with improved thermo-mechanical stability. A reliable method based on Raman spectroscopy, will be developed for the precise determination of electrode stability, offering an appropriate quality control of great interest both in research and industry. The optimal design will be assembled and tested, first in single cells of 5 cm², then in 25 cm², and finally scaled to a 6-cell stack of 300 cm², to demonstrate a next generation technology with improved performance, stability and durability, aimed to accelerate the commercial uptake of water electrolysis and turn green H2 into an economically viable solution.

Programm/Programme

Koordinator

UNIVERSITAT DE VALENCIA
Netto-EU-Beitrag
€ 1 006 225,00
Adresse
AVENIDA BLASCO IBANEZ 13
46010 Valencia
Spanien

Auf der Karte ansehen

Region
Este Comunitat Valenciana Valencia/València
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 1 372 725,00

Beteiligte (4)