Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Stable and Efficient Alkaline Water Electrolyzers With Zero Critical Raw Materials for Pure Hydrogen Production

Description du projet

Électrolyse innovante de l’eau pour la production d’hydrogène pur

Dans le cadre de sa stratégie pour l’hydrogène, l’UE s’est fixé pour objectif d’installer au moins 40 GW d’électrolyseurs d’H2 renouvelable d’ici à 2030. La réalisation de cet objectif oppose toutefois des défis importants à la technologie de l’électrolyse de l’eau. L’actuelle électrolyse alcaline de l’eau (AWE) zéro gap peut s’avérer être rentable et évolutive, mais une optimisation supplémentaire de l’activité, de la stabilité et du croisement des gaz est indispensable pour augmenter l’efficacité et la durée de vie du système. Le projet SEAL-HYDROGEN, financé par l’UE, entend créer un nouveau système d’AWE qui combine les avantages classiques et les innovations de pointe. Le projet propose d’utiliser des hydroxydes doubles lamellaires (HDL) durables, rentables et bidimensionnels en remplacement des catalyseurs à base de métaux nobles. Son objectif consiste à accélérer la commercialisation de l’électrolyse de l’eau.

Objectif

The EU Hydrogen Strategy sets the goal of installing at least 40 GW of renewable H2 electrolysers by 2030, which imposes significant challenges for water-electrolysis technology. Although current zero-gap alkaline water electrolysis (AWE) has potential for cost-effectiveness and scalability, it needs further optimization in activity, stability, and gas crossover to increase efficiency and system lifetime.
This project will develop a new class of AWE combining proven benefits of classic systems with cutting-edge innovations in materials science, catalyst design, and process engineering. Driven by an industrial-feasibility vision, a system that is both technically advanced and economically viable for large-scale commercial deployment is pursued. The proposed innovations include highly efficient and earth-abundant two-dimensional layered double hydroxides (LDH) obtained through a starightforward synthetic route, offering a sustainable and cost-effective alternative to noble metal-based catalysts. An innovative technology for up-scaling the production of LDH layers by direct growth of catalysts in porous transport electrodes will be implemented and explored on commercial separators. The interplay between the substrate, catalyst, and separator will be thoroughly optimized through the development of triple-phase boundary electrodes (catalyst-support-ionomer) structures with improved thermo-mechanical stability. A reliable method based on Raman spectroscopy, will be developed for the precise determination of electrode stability, offering an appropriate quality control of great interest both in research and industry. The optimal design will be assembled and tested, first in single cells of 5 cm², then in 25 cm², and finally scaled to a 6-cell stack of 300 cm², to demonstrate a next generation technology with improved performance, stability and durability, aimed to accelerate the commercial uptake of water electrolysis and turn green H2 into an economically viable solution.

Coordinateur

UNIVERSITAT DE VALENCIA
Contribution nette de l'UE
€ 1 006 225,00
Adresse
AVENIDA BLASCO IBANEZ 13
46010 Valencia
Espagne

Voir sur la carte

Région
Este Comunitat Valenciana Valencia/València
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 372 725,00

Participants (4)