Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Scale-resolving Simulations ​for Innovations in Turbomachinery Design

Project description

Aero engine design for a greener future

The aviation industry faces a major challenge: developing ultra-efficient propulsion systems that drastically cut greenhouse gas emissions while meeting the EU’s goal of climate neutrality by 2050. Current engine design methods struggle to explore new concepts and solve complex aerodynamic problems within required timeframes. Advanced simulations could improve the process, but standard industrial workflows lack the capability to fully integrate them. To meet these challenges, a fundamental shift in engine design approaches is needed. The EU-funded Sci-Fi-Turbo project aims to integrate high-order scale-resolving simulations, AI, and high-performance computing into industry workflows. These advancements are expected to enhance accuracy, reduce testing needs, and accelerate the development of next-generation, net-zero-emission aircraft engines.

Objective

Sci-Fi-Turbo aims to revolutionise the aero engine design process by advancing and integrating high-order scale-resolving simulations (SRS) and optimization methodologies into standard industrial workflows. SRS are a key enabler for developing ultra-efficient propulsion systems that drastically reduce GHG emissions by 2035 and achieve the EU's target to be climate-neutral by 2050. The advancements will boost design process capabilities and reduce product development cycles.

Future engine concepts require opening up the design space and solving complex design problems out of reach for today's standard industrial design processes within the required timeframe. To achieve the necessary step change in engine design, a similar step change is needed for the design approach. Sci-Fi-Turbo fills this urgent need by exploiting opportunities in three foundation technologies: High-performance computing, high-order numerical methods, and AI/ML. The combination is used to implement and demonstrate two key advancements. First, a highly integrated high-order SRS design process is established for modern CPU/GPU hardware, meeting robustness, accuracy, and turnaround time requirements. It will provide increased functionality and effectivity at an industrial level and pave the way for the uptake of SRS-based design by the industry. The high accuracy of the methodology will also reduce the need for low-TRL testing and enable new concepts and extended operating conditions. Second, an SRS-assisted multi-fidelity, data-driven optimisation framework is developed, which embeds and exploits the advantages of highly accurate high-order SRS while leveraging AI/ML methods to increase the predictive capability of lower-fidelity simulations and maximize overall process accuracy and speed. Dedicated experiments support the technology advancement and will enable the design of net-zero-emission engines in due time and contribute to the digital transformation of the aviation industry.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-RIA - HORIZON Research and Innovation Actions

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-CL5-2023-D5-01

See all projects funded under this call

Coordinator

DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 032 120,00
Address
LINDER HOHE
51147 KOLN
Germany

See on map

Region
Nordrhein-Westfalen Köln Köln, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 032 120,00

Participants (7)

Partners (3)

My booklet 0 0