Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Packing in Discrete Domains - Geometry and Analysis

Objective

The packing problem associated with a family of sets F seeks a large subfamily of pairwise disjoint members of F. When F comprises the unit balls in d-space, this is the sphere packing problem, which for d = 3 was solved by Hales-Ferguson (Keplers conjecture). The cases d = 8, 24 have won Viazovska her Fields Medal. Much of discrete mathematics deals with dense packing problems. The asymptotic rate vs. distance problem, may be the most fundamental open problem about error correcting codes. It seeks the densest Hamming-sphere packing in discrete cubes. A linear code is a linear subspace of F_2n. Such codes are important both in theory and in practice. Here, we seek to maximize dim(C), when every nonzero vector in C has Hamming weight n. Despite its mathematical significance and practical importance, the answer remains unknown for all 1/2 > > 0, and our best upper bounds on the rate date from the 70s. Neither do we know if linear codes can be asymptotically as good as general codes. We have made some progress on these key questions of our proposal. The infinite d-regular tree Td is another important metric space where we seek dense sphere packing. It is easy to perfectly pack balls in Td, but not in a periodic manner. Periodic perfect sphere packings in Td coincide with Moore graphs - finite regular graphs of least diameter and largest possible girth (i.e. with no short cycles). Moore graphs were fully characterized in the 70s, yet we still cannot show that for fixed d 3 and large r, any periodic packing of r-spheres in Td must have vanishing density. Many important mathematicians, including Erds, Margulis, and Lubotzky-Phillips-Sarnak sought the largest possible girth of a d-regular n-vertex graph (d fixed, n ). We show how better upper bounds on linear codes yield progress here, whereas bounds on general codes would not do.We use computers as exploratory tools, e.g. to test our new bounds on codes, yet we publish only humanly verifiable proofs.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-ADG

See all projects funded under this call

Host institution

THE HEBREW UNIVERSITY OF JERUSALEM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 194 125,00
Address
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 JERUSALEM
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 194 125,00

Beneficiaries (1)

My booklet 0 0