Project description
Searching for evidence of nanohertz gravitational waves
We are on the brink of a major leap in gravitational wave astronomy with pulsar timing arrays poised to detect nanohertz gravitational waves. These waves could come from supermassive black hole pairs, which are crucial yet hidden elements in structure formation and galaxy evolution. However, they might also originate from early universe phenomena like inflation. The ERC-funded PINGU project aims to merge gravitational wave and electromagnetic data using a new framework. The envisioned framework should allow researchers to decipher the nature of nanohertz gravitational signals, shed light on supermassive black holes and pave the way for multi-messenger astronomy.
Objective
We are on the verge of the next big breakthrough in gravitational wave (GW) astronomy: namely the detection of a nano-Hz GW signal with Pulsar Timing Arrays (PTAs). Within the next few years nano-Hz GWs will be established as a completely new window on our Universe, unlocking an unprecedented opportunity to unveil its secrets. The signal is anticipated to come from a cosmic population of supermassive black hole binaries (SMBHBs), which are a fundamental, yet observationally missing, piece in the process of structure formation and galaxy evolution. However, alternative Early Universe origins, including backgrounds arising from inflation or phase transitions, cannot be dismissed a priori.
To exploit the scientific breakthrough potential of this new window we need an innovative, robust framework to build our way forward in uncharted territory. A framework that allows us to establish the nature of the nano-Hz GW signal and understand its implications for astrophysics and cosmology. PINGU is this framework; it is a concerted multimessenger project for connecting the GW and electromagnetic (EM) Universe in a novel way. On the one hand, it will leverage on the 15-year long expertise of the PI in PTA observations, data analysis and signal characterization to pin down the properties of the nano-Hz GW signal and characterize its features. On the other hand, it will exploit the most powerful all sky survey and state of the art galaxy formation models to construct a live nano-Hz GW map of our Universe and match it with the upcoming results of PTA observations. This will allow us to exploit the full potential of the nano-Hz GW sky, including: i) establishing the origin of the GW signal and probe its astrophysical nature, ii) gain unprecedented insights into the formation and evolution of SMBHBs and their role in galaxy formation, iii) identify SMBHBs and map their distribution in the Universe, iv) enable, for the first time, multimessenger astronomy in the nano-Hz GW band.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences astronomy astrophysics
- natural sciences physical sciences astronomy physical cosmology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20126 Milano
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.