Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

The organization of the archaeal cell

Project description

Exploring archaeal cell biology

Archaea are a domain of microorganisms distinct from bacteria and eukaryotes that often inhabit extreme environments, such as hot springs and deep-sea vents. They are known for their unique biochemical and genetic properties, yet understanding their cell biology remains limited due to a lack of model systems and tools. The ERC-funded ARCHCELLORG project aims to address this by using advanced methodologies, including live cell imaging of Haloferax volcanii, to investigate archaeal cell division and shape regulation. This research will enhance our understanding of archaeal cell organisation and offer insights into the evolution of cellular life, including the origins of eukaryotes.

Objective

Archaea are microbes that form one of the three domains of life. While sharing similarities with both Bacteria and Eukarya, archaea possess unique features such as atypical lipid membranes, the archaellum motility apparatus, and exclusive metabolic pathways like methanogenesis. Studies over the last decade have substantially expanded the archaeal tree of life, revealing the tremendous diversity, widespread distribution and vital ecological roles mediated by these organisms, as well as their crucial evolutionary placement as close relatives of eukaryotes. Despite these major advances regarding archaea diversity, ecology and evolution, our knowledge of archaeal cell biology remains limited, particularly due to the scarcity of model systems and suitable genetic and imaging tools. In ARCHCELLORG, we propose to explore recent methodological advances, including the ability to perform live cell imaging on the model archaeum Haloferax volcanii, combined with genetics, physiology, biochemistry and structural approaches, to unravel the mechanisms governing three fundamental aspects of archaea cellular organization: cell division, polarity, and shape regulation. In Aim 1, we will elucidate the molecular composition of the archaeal division machinery and the mechanisms involved in its organization and placement at the division plane. In Aim 2, we will identify the main regulators of cell polarity and characterize their modes of action. In Aim 3, we will investigate regulators of shape transition and define the mechanisms by which they coordinate shape changes and motility. Elucidating these processes will not only contribute to further our understanding of archaeal cell organization but will likely also provide valuable insights into the evolution of cellular life on Earth, including the processes that led to the emergence of eukaryotes.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-ADG

See all projects funded under this call

Host institution

ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 498 000,00
Address
FAHNENBERGPLATZ
79098 Freiburg
Germany

See on map

Region
Baden-Württemberg Freiburg Freiburg im Breisgau, Stadtkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 498 000,00

Beneficiaries (1)

My booklet 0 0