Project description
Studying the amygdala for insight into emotional learning
Learning and memory involve the integration of sensory experiences with emotional and motivational signals. These cognitive functions are crucial for adapting to changing environments, enabling us to make informed decisions and form long-lasting memories based on past experiences. The ERC-funded AMYGVALBCI project aims to uncover core principles of the amygdala, the part of the brain that plays a key role in learning and memory. The work will focus on emotional significance representation in amygdala circuits and how this guides behaviour. Researchers will explore brain-computer interfaces to clarify the amygdala's role in emotional learning, with results potentially leading to the development of interventions for mental health disorders.
Objective
The primate amygdala is a neural hub that processes computations for learning and memory, specifically when learning involves emotional, motivational, and reinforcement-based signals. This requires it to remain highly adaptive for changes in valence of environments and stimuli. Failures of such computations can lead to maladaptive behaviors and even psychopathologies such as PTSD and Anxiety. However, the core principles of amygdala function continue to elude the field. Recent studies suggest valence is processed in dedicated pathways, and we do not fully understand the mechanisms governing adaptive processing of valence and its reversal. Our overarching goal here is to elucidate the factors that underlie the dynamics of valence representation in amygdala circuits, and actively reverse valence to examine the impact on behavior. We develop a new framework using brain-computer-interface (BCI) and a closed-loop approach that allows us to guide changes in neural activity in the primate amygdala and modulatory networks. We test the hypothesis that coding properties of single amygdala neurons are dynamic, and examine how adaptive flexible coding is enabled by population activity. We unveil the parameters that govern this flexibility- timescales, directionality, population size, and its effective dimensionality. We then test how reversing representation of valence alters the animal response to learned stimuli, and use it to examine and manipulate aversive-biases in models of anxiety/trauma: generalization and exploration. Using high-density neural recordings in the primate amygdala, ACC, SI, with closed-loop behavioral paradigms and computational approaches, we will unveil a more direct (rather than correlative) role for the amygdala in the process of valence-based learning, and find the constraints that limit network adaptivity. Our findings in the primate brain will accelerate the design of closed-loop interventions to alleviate human psychopathologies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
7610001 Rehovot
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.