Project description
A path to sustainable industrial practices
As global temperatures rise due to anthropogenic CO2 emissions, sectors such as air travel, steel, and cement production face critical challenges in reducing their carbon footprint. While renewable energy and electrification have made strides, these industries require additional measures, including renewable fuels and CO2 conversion techniques. With the support of the Marie Skłodowska-Curie Actions programme, the HPSR-AME-CO2RR project addresses this by focusing on the renewable-powered electrochemical CO2 reduction reaction (eCO2RR), a promising method for producing carbon monoxide. Despite progress, practical eCO2RR implementation is hindered by issues with catalyst performance and electrode durability. The project integrates advanced electrocatalyst design and electrode reconstruction to enhance selectivity, stability, and cost-efficiency, aiming to pave the way for viable eCO2RR solutions.
Objective
Anthropogenic CO2 emission is anticipated to contribute to a projected global temperature increase of 1.5°C between 2030 and 2052, which is associated with various environmental challenges. While renewable energy sources and electrification have successfully reduced CO2 emissions in some sectors, air transportation without available electrified alternatives and sectors like steel and cement production that inherently involve carbon oxidation in operations must proactively take measures to mitigate their carbon footprint. This entails a combination of adopting renewable fuels and employing CO2 conversion techniques. In the short to intermediate term, the renewable-powered electrochemical CO2 reduction reaction (eCO2RR) for carbon monoxide production offers a techno-economically feasible approach. Despite extensive research efforts in this field, achieving economically compelling eCO2RR implementation has proven elusive. The primary challenges stem from catalyst performance and electrode durability. Regarding catalysts, maintaining high selectivity under commercially relevant conditions is imperative. On the electrode front, enhancing both chemical and mechanical strength is essential to reduce capital expenditure. To comprehensively address these challenges and with the support of the Marie Skłodowska-Curie Actions, the objective of this project is to integrate electrocatalyst design (focused on improving eCO2RR selectivity and activity) with electrode reconstruction efforts (aimed at overcoming flooding issues and enhancing the stability of the reaction interface). This integrated approach seeks to facilitate the practical implementation of eCO2RR. Furthermore, a deep understanding of the structure-activity relationship will be attained through in-situ spectroscopy and theoretical calculations. The assessment of this novel strategy within this project's scope has the potential to guide the more rational development of practical eCO2RR implementation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences catalysis electrocatalysis
- natural sciences chemical sciences electrochemistry electrolysis
- engineering and technology environmental engineering energy and fuels
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8000 Aarhus C
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.