Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Enhancing Industrial Cultivation: A Breakthrough Approach Using Methylated Compounds to Expedite Microbial Growth

Project description

Redefining microbial cultivation practices

Industries reliant on microbial cultivation face exorbitant production costs, with cultivation processes consuming up to 40 % of total expenses. Yet, conventional methods often overlook the crucial lag phase, a period of limited bacterial growth that elongates production timelines and inflates costs. This oversight poses a significant hurdle to efficiency and profitability within the industry. Addressing this challenge is paramount for advancing microbial cultivation practices and enhancing economic sustainability. With this in mind, the ERC-funded FastMicrobes project incorporates in the lag phase naturally occurring methylated compounds, enabling researchers to expedite bacterial growth by up to 10 hours, slashing production time and costs. This approach promises to revolutionise industrial cultivation, enhancing product yield while reducing expenses.

Objective

Accelerating Microbial Cultivation through Lag Phase Shortening using Methylated Compounds

Industries reliant on microbial cultivation face high production costs, with the cultivation process accounting for 20-40% of the total. However, conventional strategies often overlook the lag phase, an early growth phase in which bacteria do not grow that significantly elongates the cultivation process and impacts production costs.

Recent findings arising from our ERC-funded research, reveal a ground-breaking mechanism for modulating bacterial lag phase duration. Through the addition of naturally abundant methylated compounds during the lag phase, we demonstrate a strategy to expedite bacterial growth by up to 10 hours. This approach, previously unexplored due to technical challenges, could revolutionize industrial cultivation, reducing costs and enhancing product yield.

Our ERC-funded research uncovered a novel regulatory circuit influencing the bacterial lag phase. In our research of algal-bacterial routes of metabolic exchange, we discovered that abundant methylated compounds that are produced by algae and plants can significantly expedite the lag phase of various bacteria. Detailed insights into this mechanism enabled tailored treatments that shorten lag phases by utilizing methylated compounds. This approach presents a safe, affordable, and unique solution for industry challenges.

In this proposal, we outline a comprehensive plan to address current industrial cultivation challenges and exploit our innovative approach. By leveraging methylated compounds to expedite lag phases, both in bacteria and yeast, we aim to optimize yield, revolutionize microbial cultivation, and potentially transform an industry with an expected value of $130-180 billion by 2030.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-POC

See all projects funded under this call

Host institution

WEIZMANN INSTITUTE OF SCIENCE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
HERZL STREET 234
7610001 Rehovot
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0