Project description
Molecular players of cell mechanosensing
The cell cytoskeleton is a dynamic network of fibres that plays a crucial role in mechanosensing, allowing cells to perceive and respond to mechanical cues in their environment. Funded by the Marie Skłodowska-Curie Actions programme, the LIM-it project aims to investigate two proteins that are associated with the actin cytoskeleton and implicated in many diseases. Their precise molecular functions are unclear, but they are known to associate with stress fibres, the contractile structures of non-muscle cells. Researchers will elucidate the mechanism by which these proteins function, enhancing our understanding of cytoskeleton organisation and mechanosensing, with potential implications for treating diseases like cancer.
Objective
The LIM domain proteins LASP1 and PDLIM4 are associated with the actin cytoskeleton, and implicated in many diseases. However, their precise molecular functions are poorly understood. Recent protein interaction studies from my host laboratory provided evidence that these two proteins associate with stress fibers (SFs), the contractile actomyosin structures of non-muscle cells. Distant homologues of LASP1 and PDLIM4 are also present in muscle sarcomeres, suggesting a potential structural role of these proteins in SFs. However, several other LIM domain proteins are involved in a wide-variety protein-protein interactions and signaling pathways, suggesting possible roles for LASP1 and PDLIM4 in signal transduction, especially in mediating mechanosensing in SFs. Indeed, previous studies proposed that LASP1 is a possible regulator of translation, whereas PDLIM4 may function as an adaptor between the cytoskeleton and kinases. The aim of my work is to elucidate the molecular functions of PDLIM4 and LASP1 using a combination of proteomics, cell biological, genetic and biochemical approaches. My specific interest is to uncover whether PDLIM4 and LASP1 are structural components of stress fibers, or if they function as mechanosensitive regulators of translation or intracellular signaling.
The findings will uncover the roles of PDLIM4 and LASP1 in cytoskeleton organization, potentially providing new insights into various diseases, including cancer. Additionally, understanding the interplay between SF-mediated mechanosensing and translation may reveal new mechanisms by which cells respond to mechanical cues. Overall, this study will broaden our understanding of SF-signaling, and has potential implications for therapeutic interventions in diseases linked to SF-dysregulation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering fibers
- natural sciences biological sciences biochemistry biomolecules proteins proteomics
- medical and health sciences clinical medicine oncology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00014 HELSINGIN YLIOPISTO
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.