Project description
Turning buildings into power sources with advanced thermoelectric modules
In the EU, urban heat islands and soaring summer temperatures are pressing issues, exacerbating energy demands and environmental concerns. Thermoelectric (TE) technology offers a promising solution by converting heat into electrical power, potentially transforming buildings into energy generators. With the support of the Marie Skłodowska-Curie Actions programme, the RESHAPE project is pioneering the development of high-efficiency geopolymer TE modules. These building materials aim to address the limitations of TE cement composites by integrating advanced additives to enhance both mechanical and thermoelectric properties. The project will also assess the modules’ durability and performance through rigorous testing and modelling. RESHAPE’s goal is to advance towards nearly zero-energy buildings, contributing to a more sustainable urban future.
Objective
Thermoelectric (TE) technology, which can convert thermal energy into electrical power, represents a crucial clean energy innovation. When integrated into the field of architecture, it holds the potential to transform buildings from passive energy consumers into active energy generators. Furthermore, it can serve as an effective strategy to mitigate the rising urban heat island effect and soaring summer temperatures, which are increasingly prevalent in the European Union (EU). In recent years, TE cement composites have garnered significant attention due to their robustness and cost-effectiveness compared to commercial TE modules. However, the thermoelectric performance of TE cement composites typically falls significantly below the requirements for practical applications. This project aims to lead the development of high-efficiency geopolymer TE modules for energy harvesting, thereby advancing the EU's progress towards achieving nearly zero-energy buildings. The proposed high-efficiency geopolymer TE module represents an innovative building material that can fulfill both structural (mechanical) and TE (energy harvesting) roles. The mechanical and thermoelectric properties of these geopolymer modules will be enhanced through the addition of various additives. Subsequently, the project will analyze the reversibility/cyclability aging and mechanical durability of geopolymer TE modules to further enhance their functionality and applicability. Additionally, a comprehensive thermo-electro-chemo numerical model will be employed and validated using data obtained from microstructural assessments of aging geopolymer TE modules.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
You need to log in or register to use this function
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinator
64289 Darmstadt
Germany