Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Positive Geometries in the Real World

Project description

Innovative algorithms for computations in scattering theory

Our understanding of the fundamental laws of nature relies heavily on scattering amplitudes, traditionally computed using Feynman diagrams. However, inherent limitations in this approach have prompted a quest for alternative methods. In specific theories, scattering amplitudes can now be computed as ‘volumes’ of positive geometries in kinematic space, offering a simpler approach, but also obscuring some familiar properties associated with Feynman diagrams. The MSCA-funded PositiveWorld project aims to reformulate physics beyond the traditional framework of Quantum Field Theory and Feynman diagrams. The goal is to prioritise progress based on computational efficiency. Specifically, the project will introduce innovative algorithms designed to handle computations pertaining to different aspects of scattering theory, offering practical implications for the theoretical forecasts of collider-based experiments.

Objective

"Our understanding of the fundamental laws of Nature is based on the study of scattering amplitudes, traditionally computed using Feynman diagrams.
In the past three decades, the shortcomings of this representation have become increasingly clear. Scattering amplitudes enjoy a simplicity which is destroyed by Feynman diagrams, resulting in an overwhelming apparent complexity of computations.
This has motivated the search for alternatives to Feynman diagrams, which culminated in the discovery that scattering amplitudes in two toy theories, maximally supersymmetric Yang-Mills theory, and the simplest theory describing colored scalars, can be computed as ""Volumes"" of positive geometries: regions in kinematic space carved out by inequalities.
In the new representation it is the usual properties kept manifest by Feynman diagrams, Locality and Unitarity, which are now obscured while the simplicity of scattering amplitudes is restored.
These developments are both conceptually intriguing and practically useful; however, they have so far been limited to applications in toy theories only.
The goal of PositiveWorld (Positive geometries in the real World) is to address this issue, using the lessons learned in these examples to describe our world, thus marching towards a reformulation of physics completely alternative to the traditional language of Quantum Field Theory and Feynman diagrams.
The guiding principle in this exploration is that progress is measured by the efficiency of computations. Therefore, concrete results within PositiveWorld are presented in the form of novel algorithms to address calculations on various topics of scattering theory, with practical applications for theoretical predictions of experiments taking place at particle colliders."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-PF-01

See all projects funded under this call

Coordinator

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 265 647,84
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0