Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Deep Learning Based Interpretable Pediatric Brain Tumors Segmentation and Classification

Descripción del proyecto

Un marco basado en inteligencia artificial para clasificar los tumores encefálicos pediátricos

Los tumores encefálicos pediátricos (PBT, por sus siglas en inglés) son la principal causa de muerte por cáncer en niños y adolescentes. Las tecnologías de inteligencia artificial (IA) ayudan a los médicos en la detección y el diagnóstico de PBT mediante sistemas de apoyo a la toma de decisiones clínicas (CDSS, por sus siglas en inglés). Sin embargo, debido a los limitados conjuntos de datos de imágenes médicas, los médicos necesitan ayuda para segmentar los PBT. Además, la preocupación por la falta de transparencia de algunos modelos de IA dificulta la adopción de la IA en los CDSS entre los médicos. El equipo del proyecto DL-I-PBraTSC, que cuenta con el apoyo de las Acciones Marie Skłodowska-Curie, pretende desarrollar un marco avanzado basado en IA para clasificar tumores encefálicos primarios en niños y adolescentes. Esto ayudará a diagnosticar, planificar el tratamiento y predecir los resultados del paciente. En el proyecto se recopilarán imágenes médicas de PBT grandes y equilibradas de un hospital secundario y se utilizará una plataforma de pruebas en línea para recoger opiniones.

Objetivo

The DL-I-PBraTSC project aims to address the significant impact of pediatric brain tumors (PBTs) as the leading cause of cancer death in children and adolescents. Artificial Intelligence (AI) technologies are increasingly being explored to assist doctors in detecting and diagnosing through clinical decision support systems (CDSS). However, They face the challenges in successfully segmenting PBTs due to the scarcity of available medical image datasets. Additionally, the lack of transparency in black-box AI models has raised concerns among doctors, hindering the adoption of AI in CDSS. To tackle these challenges, the project will develop a state-of-the-art interpretable AI-based framework to classify PBTs including tumor segmentation. DL-I-PBraTSC will identify the location of PBTs, classify of PBT types, and enable quantitative analysis of sub-region of PBT parameters helping clinicians in diagnosis, treatment planning, monitoring disease progression, and predicting patient outcomes. The project will start with collecting and preparing sufficiently large, balanced PBT medical images from secondment institution with the assistance of medical experts. An online test platform will be implemented for clinicians to use the model, gathering feedback for further validation and improvements. The non-academic placement will provide real-world clinical validation of the model's efficacy. The project findings will be shared in conferences or journals targeting both neuroscience and informatics. DL-I-PBraTSC can help healthcare providers make more informed decisions about diagnosis and treatment planning of PBTs and contribute to early detection and intervention. These can lead to better patient outcomes, improved overall healthcare delivery and public health outcomes, and reduced healthcare costs, aligning with the EU's objectives of providing ensuring the safety and well-being of its citizens and one of the Irish national research priorities areas, Health and Wellbeing.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) HORIZON-MSCA-2023-PF-01

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

UNIVERSITY OF GALWAY
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 269 418,00
Dirección
UNIVERSITY ROAD
H91 Galway
Irlanda

Ver en el mapa

Región
Ireland Northern and Western West
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Socios (3)

Mi folleto 0 0