Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Deep Learning Based Interpretable Pediatric Brain Tumors Segmentation and Classification

Descrizione del progetto

Una struttura basata sull’intelligenza artificiale per classificare i tumori cerebrali pediatrici

I tumori cerebrali pediatrici sono la principale causa di morte per cancro nei bambini e negli adolescenti. Le tecnologie basate sull’intelligenza artificiale (IA) aiutano i medici nell’individuazione e nella diagnosi di tali patologie grazie ai sistemi di ausilio alle decisioni cliniche; tuttavia, a causa della limitatezza degli insiemi di dati di immagini mediche, i medici hanno bisogno di assistenza per segmentare tali tumori. Inoltre, le preoccupazioni sulla mancanza di trasparenza dei modelli di IA «a scatola nera» ostacolano l’adozione da parte dei medici dell’IA nei sistemi di ausilio alle decisioni cliniche. Con il sostegno del programma di azioni Marie Skłodowska-Curie, il progetto DL-I-PBraTSC si propone di sviluppare un quadro avanzato basato sull’intelligenza artificiale per la classificazione dei tumori cerebrali primari nei bambini e negli adolescenti, contribuendo a diagnosticare e pianificare il trattamento, nonché a prevedere gli esiti per i pazienti. Il progetto raccoglierà immagini mediche di grandi dimensioni e bilanciate su questi tumori da un ospedale secondario e utilizzerà una piattaforma di test online per raccogliere feedback.

Obiettivo

The DL-I-PBraTSC project aims to address the significant impact of pediatric brain tumors (PBTs) as the leading cause of cancer death in children and adolescents. Artificial Intelligence (AI) technologies are increasingly being explored to assist doctors in detecting and diagnosing through clinical decision support systems (CDSS). However, They face the challenges in successfully segmenting PBTs due to the scarcity of available medical image datasets. Additionally, the lack of transparency in black-box AI models has raised concerns among doctors, hindering the adoption of AI in CDSS. To tackle these challenges, the project will develop a state-of-the-art interpretable AI-based framework to classify PBTs including tumor segmentation. DL-I-PBraTSC will identify the location of PBTs, classify of PBT types, and enable quantitative analysis of sub-region of PBT parameters helping clinicians in diagnosis, treatment planning, monitoring disease progression, and predicting patient outcomes. The project will start with collecting and preparing sufficiently large, balanced PBT medical images from secondment institution with the assistance of medical experts. An online test platform will be implemented for clinicians to use the model, gathering feedback for further validation and improvements. The non-academic placement will provide real-world clinical validation of the model's efficacy. The project findings will be shared in conferences or journals targeting both neuroscience and informatics. DL-I-PBraTSC can help healthcare providers make more informed decisions about diagnosis and treatment planning of PBTs and contribute to early detection and intervention. These can lead to better patient outcomes, improved overall healthcare delivery and public health outcomes, and reduced healthcare costs, aligning with the EU's objectives of providing ensuring the safety and well-being of its citizens and one of the Irish national research priorities areas, Health and Wellbeing.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) HORIZON-MSCA-2023-PF-01

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

UNIVERSITY OF GALWAY
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 269 418,00
Indirizzo
UNIVERSITY ROAD
H91 Galway
Irlanda

Mostra sulla mappa

Regione
Ireland Northern and Western West
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Partner (3)

Il mio fascicolo 0 0