Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Compositional Approximation Schemes

Description du projet

Explorer l’approximation de composition pour les réseaux neuronaux

Bien que les réseaux neuronaux soient bien établis dans de nombreux domaines scientifiques, leurs méthodes sont souvent dépourvues du fondement mathématique nécessaire pour garantir la précision des solutions qu’ils produisent. Nous pourrions améliorer la fiabilité des résultats dans l’apprentissage automatique scientifique lorsque la connaissance de la réalité de terrain recherchée satisfait à une équation différentielle partielle. Du point de vue de la théorie de l’approximation, il est utile de comprendre quand et pourquoi ces connaissances devraient être exploitées. Soutenu par le programme Actions Marie Skłodowska-Curie, le projet CompAS comparera l’approximation de composition et l’approximation de superposition classique à un niveau structurel fondamental. Il vise à identifier les cas où l’approximation de composition offre un avantage par rapport à l’approximation de superposition, puis à développer des moyens de caractériser ces cas.

Objectif

Neural networks have firmly established themselves as powerful tools in many scientific domains, e.g. for protein folding, recovering images of black holes, or solving Schrödinger equations. Although empirically highly successful, neural network based methods very often lack the mathematical foundation to be able to guarantee the accuracy of the solution they produce. While this lack of reliability constitutes a major issue for many applications, I believe that, for scientific machine learning in particular, there is a promising path towards overcoming these issues, as there usually exists knowledge of the ground truth one would like to learn, e.g. that it must satisfy some partial differential equation. The goal of this project is understanding, from an approximation theory perspective, when and why such knowledge may be exploited.

A defining property of neural networks is that they consist of a composition of simple building blocks. From the view of approximation theory this is a major paradigm shift, as it classically focuses on superpositional approximation, i.e. based on taking linear combinations of simple building blocks. This project aims to understand, on a fundamental structural level, how compositional approximation differs from classical superpositional approximation. Specifically it will first prove the existence of cases, in which compositional approximation provides a fundamental advantage over superpositional approximation, and subsequently develop ways to characterize these cases.

On one hand this will significantly deepen the comprehension of this paradigm-shift in approximation theory, on the other hand it will establish a foundation for the development of provably accurate neural networks based machine learning algorithms.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2023-PF-01

Voir tous les projets financés au titre de cet appel

Coordinateur

UNIVERSITAT WIEN
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 183 600,96
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0