Project description
Phase change materials for reduced emissions and energy consumption
To address the dangers of climate change, countries and organisations are adopting green solutions that reduce emissions and minimise environmental damage throughout value chains. Building operations and maintenance often require significant electricity, water, and heating and cooling resources, leading to substantial emissions. Therefore, sustainable solutions for energy storage in construction are urgently needed. Supported by Marie Skłodowska-Curie Actions (MSCA), the SMART-NRG project aims to develop and optimise phase change materials (PCMs) made from biomass as a sustainable solution for thermal energy storage in buildings. The project will tackle challenges related to PCMs’ low thermal conductivity and leakage, leading to lower energy consumption and emissions.
Objective
Energy efficiency in buildings is a critical aspect of addressing climate change and reducing greenhouse gas emissions. To contribute to this endeavor, our research project focuses on the development and optimization of phase change materials (PCMs) derived from biomass as a sustainable solution for thermal energy storage in buildings. PCMs have shown promise in enhancing energy efficiency by storing and releasing thermal energy as they undergo phase transitions. However, challenges such as low thermal conductivity and leakage have limited their widespread application, especially in construction materials. Our project seeks to address these challenges by exploring the use of natural biomass materials, such as plant fibers, wood particles, endocarps, and husks, as containers for PCMs. These lignocellulosic materials possess unique properties, including high deformation capacity and porosity, which make them promising candidates for effectively containing and activating PCMs. By utilizing biomass as PCM containers, we aim to improve the thermal performance of building materials, reducing energy consumption and greenhouse gas emissions. To achieve our objectives, we will conduct a comprehensive research program that includes experimental testing, numerical simulations, and optimization techniques.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
You need to log in or register to use this function
Keywords
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinator
16126 Genova
Italy