Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

On-chip model of mucociliary clearance for the design of drug formulations aimed at chronic respiratory diseases

Project description

Mimicking respiratory tract clearance on a chip

Our respiratory system has a critical defence mechanism known as mucociliary clearance (MCC). It involves the coordinated action of mucus and cilia to remove inhaled particles, pathogens and other debris from the respiratory tract. At the same time, however, it limits the effectiveness of inhalation treatments for respiratory diseases. Funded by the Marie Skłodowska-Curie Actions programme, the MuST project aims to identify drugs that can pass through the MCC. To achieve this, researchers propose to model MCC using a microfluidic chip that will enable them to screen new formulations based on their ability to move through mucus. This alternative to cell-based models is expected to advance therapies for chronic respiratory diseases.

Objective

Chronic respiratory diseases (CRDs) caused 4 million deaths worldwide in 2019. CRD treatments are often administered by inhalation in particulate formulations. However, mucociliary clearance (MCC) acts as an effective physical barrier that prevents drugs from reaching the target cells. This mechanism relies on the beating of cilia on the bronchi surface, which allows the displacement of the overlying mucus layer. Inhaled drugs are thus trapped by the mucus and quickly evacuated from the airways.
The objective of the MuST project is to model the mechanism of MCC using a microfluidic chip, to assess drug penetration through the moving mucus and thus provide a screening platform for new drug formulations. Our main objective can be subdivided into three research objectives: 1) Develop an adequate synthetic mucus model; 2) Reproduce the mucociliary clearance mechanism on a microfluidic chip; 3) Screen innovative drug formulations using our chip.
In this project, we combine expertise in biophysics, physical chemistry, soft condensed matter, and nanomedicine. The originality of our approach lies in 3 key aspects: 1) We will develop a synthetic mucus model that reproduces all the properties of native human mucus; 2) We choose to design a non-cellular MCC model, which will provide an easy, quick, cheap, and reproducible alternative to cell-based MCC models; 3) We will apply an original technique called differential dynamic microscopy (DDM) to characterize the drug behaviour in the chip. DDM is perfectly adapted to measure particle diffusion in biological hydrogels under flowing conditions.
Our innovative screening platform will pave the way to design more efficient formulations to treat CRDs, with higher delivery rates, thereby improving the available treatments and lowering their costs. This project is in line with the United Nations’ aim “to reduce by 2030 by one-third premature mortality from non-communicable diseases [including CRDs] through prevention and treatment”.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-PF-01

See all projects funded under this call

Coordinator

UNIVERSITE PARIS CITE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 195 914,88
Address
85 BD SAINT GERMAIN
75006 PARIS
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0