Description du projet
Une puce qui reproduit la clairance des voies respiratoires
Notre système respiratoire est doté d’un mécanisme de défense essentiel, la clairance mucociliaire (CMC). Elle implique l’action coordonnée du mucus et des cils pour éliminer les particules inhalées, les agents pathogènes et autres débris des voies respiratoires. En même temps, elle limite l’efficacité des traitements par inhalation pour les maladies respiratoires. Financé par le programme Actions Marie Skłodowska-Curie, le projet MuST vise à identifier les médicaments susceptibles d’échapper à la CMC. Pour ce faire, les chercheurs proposent de modéliser ce phénomène à l’aide d’une puce microfluidique qui leur permettra de sélectionner de nouvelles formulations en fonction de leur capacité à se déplacer dans le mucus. Cette alternative aux modèles cellulaires devrait faire progresser les thérapies de lutte contre les maladies respiratoires chroniques.
Objectif
Chronic respiratory diseases (CRDs) caused 4 million deaths worldwide in 2019. CRD treatments are often administered by inhalation in particulate formulations. However, mucociliary clearance (MCC) acts as an effective physical barrier that prevents drugs from reaching the target cells. This mechanism relies on the beating of cilia on the bronchi surface, which allows the displacement of the overlying mucus layer. Inhaled drugs are thus trapped by the mucus and quickly evacuated from the airways.
The objective of the MuST project is to model the mechanism of MCC using a microfluidic chip, to assess drug penetration through the moving mucus and thus provide a screening platform for new drug formulations. Our main objective can be subdivided into three research objectives: 1) Develop an adequate synthetic mucus model; 2) Reproduce the mucociliary clearance mechanism on a microfluidic chip; 3) Screen innovative drug formulations using our chip.
In this project, we combine expertise in biophysics, physical chemistry, soft condensed matter, and nanomedicine. The originality of our approach lies in 3 key aspects: 1) We will develop a synthetic mucus model that reproduces all the properties of native human mucus; 2) We choose to design a non-cellular MCC model, which will provide an easy, quick, cheap, and reproducible alternative to cell-based MCC models; 3) We will apply an original technique called differential dynamic microscopy (DDM) to characterize the drug behaviour in the chip. DDM is perfectly adapted to measure particle diffusion in biological hydrogels under flowing conditions.
Our innovative screening platform will pave the way to design more efficient formulations to treat CRDs, with higher delivery rates, thereby improving the available treatments and lowering their costs. This project is in line with the United Nations’ aim “to reduce by 2030 by one-third premature mortality from non-communicable diseases [including CRDs] through prevention and treatment”.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
- sciences naturellessciences physiquesphysique de la matière condenséephysique de la matière molle
- sciences médicales et de la santébiotechnologie médicalenanomédecine
- sciences médicales et de la santésciences de la santémaladie infectieusevirus à ARNcoronavirus
- sciences naturellessciences biologiquesbiophysique
- sciences naturellessciences chimiqueschimie physique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Régime de financement
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinateur
75006 Paris
France