Descrizione del progetto
Simulare la clearance del tratto respiratorio su chip
Il nostro sistema respiratorio ha un meccanismo di difesa critico noto come clearance mucociliare (MCC). Questa comporta l’azione coordinata di muco e ciglia per rimuovere le particelle inalate, gli agenti patogeni e altri detriti dal tratto respiratorio. Al tempo stesso, però, limita l’efficacia dei trattamenti inalatori per le malattie respiratorie. Finanziato dal programma di azioni Marie Skłodowska-Curie, il progetto MuST mira a individuare i farmaci che possono passare attraverso la MCC. Per raggiungere questo obiettivo, i ricercatori propongono di modellizzare la MCC utilizzando un chip microfluidico che consentirà di esaminare nuove formulazioni in base alla loro capacità di muoversi attraverso il muco. Questa alternativa ai modelli cellulari dovrebbe far progredire le terapie per le malattie respiratorie croniche.
Obiettivo
Chronic respiratory diseases (CRDs) caused 4 million deaths worldwide in 2019. CRD treatments are often administered by inhalation in particulate formulations. However, mucociliary clearance (MCC) acts as an effective physical barrier that prevents drugs from reaching the target cells. This mechanism relies on the beating of cilia on the bronchi surface, which allows the displacement of the overlying mucus layer. Inhaled drugs are thus trapped by the mucus and quickly evacuated from the airways.
The objective of the MuST project is to model the mechanism of MCC using a microfluidic chip, to assess drug penetration through the moving mucus and thus provide a screening platform for new drug formulations. Our main objective can be subdivided into three research objectives: 1) Develop an adequate synthetic mucus model; 2) Reproduce the mucociliary clearance mechanism on a microfluidic chip; 3) Screen innovative drug formulations using our chip.
In this project, we combine expertise in biophysics, physical chemistry, soft condensed matter, and nanomedicine. The originality of our approach lies in 3 key aspects: 1) We will develop a synthetic mucus model that reproduces all the properties of native human mucus; 2) We choose to design a non-cellular MCC model, which will provide an easy, quick, cheap, and reproducible alternative to cell-based MCC models; 3) We will apply an original technique called differential dynamic microscopy (DDM) to characterize the drug behaviour in the chip. DDM is perfectly adapted to measure particle diffusion in biological hydrogels under flowing conditions.
Our innovative screening platform will pave the way to design more efficient formulations to treat CRDs, with higher delivery rates, thereby improving the available treatments and lowering their costs. This project is in line with the United Nations’ aim “to reduce by 2030 by one-third premature mortality from non-communicable diseases [including CRDs] through prevention and treatment”.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- scienze naturaliscienze fisichefisica della materia condensatafisica della materia soffice
- scienze mediche e della salutebiotecnologia medicananomedicina
- scienze mediche e della salutescienze della salutemalattie infettivevirus a RNAcoronavirus
- scienze naturaliscienze biologichebiofisica
- scienze naturaliscienze chimichechimica fisica
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Parole chiave
Programma(i)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Meccanismo di finanziamento
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinatore
75006 Paris
Francia