Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Wide-ranging Probabilistic Physics-guided Machine Learning Approach to Break Down the Limits of Current Fatigue Predictive Tools for Metals

Projektbeschreibung

Untersuchung der strukturellen Leistung von Materialien auf mikroskopischer Ebene

In der Technik bezeichnet der Begriff Materialermüdung die Schädigung, die im Lauf der Zeit durch wiederholte Belastung eintritt. Auch wenn die aufgebrachte Spannung unterhalb der maximalen Zugfestigkeit des Materials liegt, können wiederholte Be- und Entlastungszyklen zur Bildung mikroskopisch kleiner Risse führen, die mit jedem Zyklus wachsen und Materialbruch oder -versagen zu Folge haben. Das Team des ERC-finanzierten Projekts BREAKDOWN zielt darauf ab, die gegenwärtigen technischen Konstruktionsverfahren zu verändern, wobei Materialeigenschaften auf mikroskopischer Ebene im Mittelpunkt stehen. Das Forschungsteam wird neue Modelle und Experimente zur Charakterisierung von Materialermüdung entwickeln, die zuverlässigeren und nachhaltigeren technischen Entwürfen den Weg bereiten.

Ziel

It appears paradoxical how today's frontier & high-impact research seeks for designing new materials to delay structural failures – especially fatigue – while the same effort is not seen concerning the way materials can be efficiently and safely used in real structural applications. BREAKDOWN aims to transform engineering products’ design methods by identifying and including a set of (sub)micro-scale material inhomogeneities characteristics in a novel probabilistic framework. The time has come to exploit modern experimental techniques to probe material properties at a small scale, which are scarcely involved in current fatigue characterisation schemes. To attain this very ambitious goal, the project will rely on a breakdown of different classes of inhomogeneities to advance the fundamental mechanical understanding of their contribution to fatigue, and then reunite them within an advanced Bayesian Physics-Guided Neural Network (B-PGNN) frame. Over the past three years, I assiduously worked to prove the feasibility of BREAKDOWN and demonstrate its superior capabilities. However, I have merely scratched the surface of what is potentially achievable with this approach, both in terms of knowledge advancement and real engineering applications. An extensive multimodal experimental characterisation campaign will be conducted on different material inhomogeneity states to separate and identify their individual influence on fatigue in a systematic and detailed way. Cutting-edge numerical & analytical models will be developed and exploited as the physics knowledge in the B-PGNN scheme to effectively tackle the small datasets issue when dealing with fatigue and to ensure soundness of results. The outstanding capabilities of the framework developed in BREAKDOWN will be confirmed through specific demonstrators. BREAKDOWN will excellently contribute towards the development of a much more sustainable design procedure with unprecedented social, economic and environmental benefits.

Programm/Programme

Finanzierungsplan

HORIZON-ERC -

Gastgebende Einrichtung

UNIVERSITA DEGLI STUDI DI UDINE
Netto-EU-Beitrag
€ 1 499 954,00
Adresse
VIA PALLADIO 8
33100 Udine
Italien

Auf der Karte ansehen

Region
Nord-Est Friuli-Venezia Giulia Udine
Aktivitätstyp
Mittlere und höhere Bildungseinrichtungen
Links
Gesamtkosten
€ 1 499 954,00

Begünstigte (1)