Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Unravelling Signalling Heterogeneity using DEEP Learning and MECHANIstic Modelling

Descripción del proyecto

Métodos computacionales avanzados para investigar la señalización celular

La señalización permite a las células responder a las señales externas, pero la diversidad de respuestas entre las células complica el tratamiento de las enfermedades. Esta variabilidad, atribuida a factores complejos tanto a nivel sistémico como molecular, dificulta la comprensión y predicción de las respuestas. Para abordar esta cuestión, el equipo del proyecto DeepMechanism, financiado por el CEI, propone métodos computacionales innovadores que combinan el aprendizaje profundo y la modelización mecanicista. Con estos métodos se pretende predecir las respuestas de señalización mediante el análisis de los estados celulares y los procesos de fosforilación, integrando al mismo tiempo los conocimientos biológicos para obtener modelos más sencillos. A través de este abordaje se investigan los impulsores de la heterogeneidad en la señalización del receptor tirosina quinasa y el sarcoma de rata en el cáncer, con aplicaciones potenciales en organoides derivados de pacientes. La investigación propuesta mejoraría significativamente la comprensión de la regulación de la señalización y tiene potencial para aplicaciones amplias en sistemas biológicos y de otro tipo.

Objetivo

Signalling enables cells to respond to external cues, but the inherent heterogeneity of individual cell responses,
essential for multicellular organization, complicates disease treatment. Heterogeneity arises from drivers at
system and molecular scales, intertwined through feedback loops, making quantitative understanding and
prediction challenging. I will address this by pioneering transformative computational methods that predict
phospho-signalling responses by integrating deep learning with mechanistic modelling to integrate
systems and molecular scales.

By using unbiased pattern recognition of deep learning models, I will learn cell states and simple
phosphorylation rate laws. These will be combined with mechanistic models, integrating biological
knowledge, to build simple and interpretable models that predict signalling responses from baseline omics
profiles across distinct time-resolved and perturbational conditions. I will apply these methods to investigate
drivers of heterogeneity in receptor tyrosine kinase (RTK) and rat sarcoma (RAS) signalling, in response to
growth factors and targeted inhibitors in cancer cell lines. I will validate the approach by reprogramming
patient-derived organoids using model-proposed inhibitor combinations.

The proposed research will advance our fundamental understanding of signalling regulation and co-regulation
with cellular states. Given the vital role of RTK and RAS signalling in human health, it also holds the potential
for translational impact. More broadly, the proposed computational methods are versatile and could be applied
to a broad range of biological and non-biological systems.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2024-STG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

THE FRANCIS CRICK INSTITUTE LIMITED
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 499 466,00
Dirección
1 MIDLAND ROAD
NW1 1AT London
Reino Unido

Ver en el mapa

Región
London Inner London — West Camden and City of London
Tipo de actividad
Research Organisations
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 499 466,00

Beneficiarios (1)

Mi folleto 0 0