Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Unravelling Signalling Heterogeneity using DEEP Learning and MECHANIstic Modelling

Projektbeschreibung

Fortschrittliche rechnergestützte Ansätze zur Erforschung der Zellsignalgebung

Durch Signale können Zellen auf externe Reize reagieren. Da verschiedene Zellen jedoch unterschiedlich reagieren, ist die Behandlung von Krankheiten schwierig. Diese Variabilität ist auf komplexe Faktoren auf systemischer und molekularer Ebene zurückzuführen und ist der Grund, dass die Erklärung und Vorhersage der Reaktionen schwierig sind. Über das ERC-finanzierte Projekt DeepMechanism werden innovative rechnergestützte Methoden vorgestellt, bei denen Deep Learning mit mechanistischer Modellierung kombiniert wird. Mit diesen Methoden soll die Reaktion auf Signale vorhergesagt werden, indem der Zellstatus und Phosphorylierungsprozesse analysiert werden. Gleichzeitig wird biologisches Wissen für einfachere Modelle integriert. Mit dem Ansatz werden Faktoren der Heterogenität der Signalübertragung an Rezeptor-Tyrosinkinasen und Rat sarcoma bei Krebs untersucht. Mögliche Anwendungsgebiete sind von Betroffenen abgeleitete Organoide. Durch die Forschung könnte das Wissen zur Signalregulierung bedeutend erweitert werden. Die Erkenntnisse könnten in zahlreiche Anwendungen in biologischen und anderen Systemen zum Einsatz kommen.

Ziel

Signalling enables cells to respond to external cues, but the inherent heterogeneity of individual cell responses,
essential for multicellular organization, complicates disease treatment. Heterogeneity arises from drivers at
system and molecular scales, intertwined through feedback loops, making quantitative understanding and
prediction challenging. I will address this by pioneering transformative computational methods that predict
phospho-signalling responses by integrating deep learning with mechanistic modelling to integrate
systems and molecular scales.

By using unbiased pattern recognition of deep learning models, I will learn cell states and simple
phosphorylation rate laws. These will be combined with mechanistic models, integrating biological
knowledge, to build simple and interpretable models that predict signalling responses from baseline omics
profiles across distinct time-resolved and perturbational conditions. I will apply these methods to investigate
drivers of heterogeneity in receptor tyrosine kinase (RTK) and rat sarcoma (RAS) signalling, in response to
growth factors and targeted inhibitors in cancer cell lines. I will validate the approach by reprogramming
patient-derived organoids using model-proposed inhibitor combinations.

The proposed research will advance our fundamental understanding of signalling regulation and co-regulation
with cellular states. Given the vital role of RTK and RAS signalling in human health, it also holds the potential
for translational impact. More broadly, the proposed computational methods are versatile and could be applied
to a broad range of biological and non-biological systems.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-ERC - HORIZON ERC Grants

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2024-STG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

THE FRANCIS CRICK INSTITUTE LIMITED
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 499 466,00
Adresse
1 MIDLAND ROAD
NW1 1AT London
Vereinigtes Königreich

Auf der Karte ansehen

Region
London Inner London — West Camden and City of London
Aktivitätstyp
Research Organisations
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 499 466,00

Begünstigte (1)

Mein Booklet 0 0