Project description
Wearable tech for real-world brain imaging
Understanding how brain networks function in real-world situations could revolutionise treatments for brain disorders. However, current tools like functional MRI are limited to controlled lab environments, and mobile EEG lacks the ability to fully capture brain networks. The ERC-funded INTEGRAL project aims to solve this by developing a wearable platform that combines high-density diffuse optical tomography, EEG and physiological sensors. This hybrid system will enable continuous, unobtrusive brain imaging in everyday settings. By advancing both hardware and machine learning analysis, INTEGRAL promises to offer new insights into brain function, transforming neurotechnology research and applications in fields like digital health and neuroscience.
Objective
Measuring and linking brain network activity to human physiology and behavior in natural everyday situations promises profound new insights into healthy brain function and disorders. However, the absence of suitable mobile neurotechnology presents a significant roadblock. Functional magnetic resonance imaging (fMRI) has greatly advanced our understanding of brain function and networks, but it is limited to single-snapshot experiments in constrained lab settings. Electroencephalography (EEG), while mobile, cannot directly be linked to brain networks captured by fMRI. To overcome these roadblocks and to advance neuro-inspired treatments and discoveries to natural environments, a hybrid wearable platform is required that combines innovations in hardware and analysis methods to enable continuous and stable measurements of brain network activity maps in the everyday world. Advancing high-density diffuse optical tomography (HD-DOT) can provide such a suitable alternative to fMRI. With a unique systems engineering concept, INTEGRAL aims to miniaturize and integrate DOT, EEG, and physiological sensors with advanced multimodal machine learning to improve spatio-temporal contrast in mobile brain-imaging. To this end, Objective 1 (Instruments) will develop hardware for unobtrusive and continuous wearable brain-body imaging with HD-DOT-EEG. Objective 2 (Experiments) will collect extensive multimodal data for measuring brain networks while controlling for environmental and physiological artifacts. Objective 3 (Analysis) will enable estimation of brain network activity with multimodal sensor fusion and machine learning and Objective 4 (Integration) will provide validation of robust brain-networks imaging in ecologically valid everyday world environments. If successful, this new platform will provide unprecedented opportunities to study brain function with global impact on neurotechnology applications and research from Neuroscience of the Everyday World to digital health.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications telecommunications networks optical networks
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- medical and health sciences basic medicine physiology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2024-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
10623 Berlin
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.