Projektbeschreibung
Maschinelles Lernen mit kollaborativen Modellen vorantreiben
Da die Modelle des maschinellen Lernens immer komplexer werden, wird auch ihr Training ressourcenintensiver. In Verbindung mit der sich ständig verändernden Natur realer Daten müssen die Modelle ständig angepasst werden, was oft ein vollständiges Neutraining auf neuen Datensätzen erfordert. Dieser Ansatz treibt die CO2-Emissionen und den Energieverbrauch in die Höhe und konsolidiert den Fortschritt bei den großen Industrieunternehmen. Vor diesem Hintergrund wird das ERC-finanzierte Projekt CollectiveMinds ein kollaboratives Netzwerk spezialisierter Modelle aufbauen, die voneinander lernen und so die Notwendigkeit einer vollständigen Umschulung verringern. Die damit einhergehende Dezentralisierung des Wissens und die Möglichkeit unabhängiger Aktualisierungen verspricht eine nachhaltigere Entwicklung der KI. Mit geplanten Anwendungen im Gesundheitswesen und in der wissenschaftlichen Forschung versucht CollectiveMinds, das maschinelle Lernen zu demokratisieren und die Zusammenarbeit und Nachhaltigkeit in einer sich entwickelnden Welt zu fördern.
Ziel
Machine learning models are growing larger and more complex, making training increasingly resource-demanding. Concurrently, our world, and hence the training data is perpetually evolving. This requires continual model updating or retraining to address changing training data. Presently, the most reliable course to handle such distribution shifts is to retrain models from scratch on new training data. This results in substantial resource usage, increased CO2 footprint, elevated energy consumption, and limits the decisive ML progress to large-scale industry players.
Imagine a world in which models help each other learn. When the data distribution changes, a complete retraining of models could be avoided if the new model could learn from the outdated one by using reliable and provably effective methods. Furthermore, the convention of relying on large, versatile monolithic models could then give way to a consortium of smaller specialized models, with each contributing its specific domain knowledge when needed. By encouraging this form of decentralization, we could reduce resource consumption as the individual components can be updated independently of each other.
Drawing on groundbreaking research in distributed ML model training, CollectiveMinds aspires to design adaptable ML models. These models can effectively manage updates in training data and task modifications, while also enabling efficient knowledge exchange across various models, thereby fostering widescale collaborative learning and constructing a sustainable framework for collaborative machine intelligence.
This initiative could revolutionize sectors like healthcare, where there is limited training data, and trustworthy AI that demands guarantees on data ownership and control. Furthermore, it could foster improved collaborative research within the realm of science. CollectiveMinds embodies a significant paradigm shift towards democratizing ML, focusing on cooperative intellectual efforts.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.1 - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-ERC - HORIZON ERC Grants
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2024-COG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
66123 SAARBRUCKEN
Deutschland
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.