Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Markov Chain Monte Carlo using couplings toward scalable statistical inference

Descripción del proyecto

Eficacia y precisión del método de Montecarlo basado en cadenas de Markov mediante el uso de «hardware» informático moderno

La ciencia de datos lleva mucho tiempo abordando la aproximación de probabilidades, un reto que afecta a campos como la estadística bayesiana, las pruebas de hipótesis clásicas y los modelos con probabilidades intratables. El método de Montecarlo basado en cadenas de Markov (MCMC, por sus siglas en inglés) ofrece un potente método mediante el uso de una cadena de Markov para estimar probabilidades, pero su eficacia se desajusta cada vez más con los modernos avances en «hardware» informático. El equipo del proyecto UMCMC, financiado por el CEI, avanzará en el marco del método de Montecarlo basado en cadenas de Markov insesgado (UMCMC) para mejorar la coordinación del MCMC con las arquitecturas informáticas contemporáneas. Al perfeccionar este método, en el proyecto se pretende mejorar la precisión, la escalabilidad y la eficiencia computacional, lo que permitirá que la inferencia probabilística sea más eficaz en diversas aplicaciones científicas y estadísticas.

Objetivo

This project develops a statistical toolbox for the approximation of probability distributions that commonly arise in data analysis. The problem of approximating probabilities arise in many tasks of data science: in Bayesian statistics and its many variants, in classical hypothesis testing with p-values, in likelihood-based methods when the model involves latent variables, in models with intractable likelihoods, in the construction of knockoffs for principled variable selection, for example. State-of-the-art methods for such approximations include Markov chain Monte Carlo (MCMC), where a Markov chain is generated in such a way that it converges to the probability of interest as the length of the sequence goes to infinity. This stands at odds with modern developments in computing hardware, which provide an increasing number of parallel processors, but where each process has a stagnating clock speed. Methods that are amenable to parallel computing must emerge to help scientists in all fields to make the most of their data. The project builds upon a framework called Unbiased Markov chain Monte Carlo (UMCMC), in which accuracy improves arbitrarily with the number of parallel runs. Each run involves the generation of coupled Markov chains for a random time horizon.

Part 1 develops UMCMC to realize its potential as a comprehensive basis for probabilistic computation on modern hardware. The project includes theoretical analyses of cost and measures of efficiency, and methodological innovations towards adaptive, efficient, robust and convenient computation.

Part 2 contributes to the applicability of UMCMC, by conceptualizing the design of coupled Markov transitions, and considering a number of challenging settings: distributions supported on submanifolds and their application in economics, distributions on graphs and their applications in the fight against malaria, and Bayesian nonparametric models for cell type deconvolution from transcriptomics data.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo.
La clasificación de este proyecto ha sido validada por personas.

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-ERC - HORIZON ERC Grants

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2024-COG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

ASSOCIATION GROUPE ESSEC
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 2 000 000,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 2 000 000,00

Beneficiarios (1)

Mi folleto 0 0