Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Markov Chain Monte Carlo using couplings toward scalable statistical inference

Description du projet

Efficacité et précision de la MCMC avec du matériel informatique moderne

La science des données est depuis longtemps confrontée à l’approximation des probabilités, un défi qui touche des domaines tels que les statistiques bayésiennes, les tests d’hypothèse classiques et les modèles avec des probabilités irréductibles. La méthode de Monte-Carlo par chaînes de Markov (MCMC) offre une approche puissante en utilisant une chaîne de Markov pour estimer les probabilités, mais son efficacité est de moins en moins en phase avec les développements du matériel informatique moderne. Le projet UMCMC, financé par le CER, fera progresser le cadre de la chaîne de Markov non biaisée de Monte Carlo (UMCMC) afin de renforcer la coordination de la MCMC avec les architectures informatiques contemporaines. En affinant cette approche, le projet vise à améliorer la précision, l’évolutivité et l’efficacité informatique, ce qui rendra l’inférence probabiliste plus efficace dans différentes applications scientifiques et statistiques.

Objectif

This project develops a statistical toolbox for the approximation of probability distributions that commonly arise in data analysis. The problem of approximating probabilities arise in many tasks of data science: in Bayesian statistics and its many variants, in classical hypothesis testing with p-values, in likelihood-based methods when the model involves latent variables, in models with intractable likelihoods, in the construction of knockoffs for principled variable selection, for example. State-of-the-art methods for such approximations include Markov chain Monte Carlo (MCMC), where a Markov chain is generated in such a way that it converges to the probability of interest as the length of the sequence goes to infinity. This stands at odds with modern developments in computing hardware, which provide an increasing number of parallel processors, but where each process has a stagnating clock speed. Methods that are amenable to parallel computing must emerge to help scientists in all fields to make the most of their data. The project builds upon a framework called Unbiased Markov chain Monte Carlo (UMCMC), in which accuracy improves arbitrarily with the number of parallel runs. Each run involves the generation of coupled Markov chains for a random time horizon.

Part 1 develops UMCMC to realize its potential as a comprehensive basis for probabilistic computation on modern hardware. The project includes theoretical analyses of cost and measures of efficiency, and methodological innovations towards adaptive, efficient, robust and convenient computation.

Part 2 contributes to the applicability of UMCMC, by conceptualizing the design of coupled Markov transitions, and considering a number of challenging settings: distributions supported on submanifolds and their application in economics, distributions on graphs and their applications in the fight against malaria, and Bayesian nonparametric models for cell type deconvolution from transcriptomics data.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
La classification de ce projet a été validée par des humains.

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

HORIZON-ERC - HORIZON ERC Grants

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2024-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

ASSOCIATION GROUPE ESSEC
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 2 000 000,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 2 000 000,00

Bénéficiaires (1)

Mon livret 0 0