Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Deep Learning meets Behavioural Ecology in the wild: methodological applications using the sociable weaver

Descripción del proyecto

Métodos de aprendizaje profundo para aumentar los estudios de la biología de la fauna salvaje

Los avances recientes en IA, especialmente en aprendizaje profundo, tienen el potencial de revolucionar el estudio de la fauna salvaje al ofrecer métodos de identificación menos invasivos, permitir la recopilación de grandes volúmenes de datos y abrir vías nuevas de investigación. Apoyado por las Acciones Marie Skłodowska-Curie, el equipo del proyecto DeepWeaver reúne a científicos y personal técnico de tres países europeos y Sudáfrica para desarrollar métodos innovadores de aprendizaje profundo para estudios no invasivos de biología de la fauna salvaje. El proyecto se centra en el reconocimiento individual, la identificación de atributos y el análisis del comportamiento. Se creará un canal para procesar grandes volúmenes de datos de vídeo, se impulsará la creatividad, se facilitará la transferencia de conocimientos y se mejorarán las redes de colaboración. Los resultados contribuirán a aumentar la competitividad de Europa en la biología de la fauna salvaje.

Objetivo

Studies of wild animals, from conservation to behaviour, are usually based on individually marked animals. This requires capturing, marking and sampling animals, which imposes limitations as these methods can be challenging, time consuming and impact individual welfare. Additionally, following and observing or video recording animals to obtain data is further constraining. Recent developments in artificial intelligence, in particular deep learning, have the potential do radically and rapidly change the way in which animals are studied in the wild. These new methods can push current boundaries by allowing not only less invasive methods of identification, but also obtaining large volumes of data and, importantly, collection of new types of data, allowing new questions to be addressed. In this proposal, we bring together a team of scientist and technical staff from three European countries and South Africa. Our aim is to develop highly innovative methods, based on rapidly advancing developments in deep learning, which can have a substantial impact on the study of wildlife biology. Specifically, we will streamline non-invasive methods (i.e. no capture) in order to obtain 1) individual re/identification in the field; 2) identification of individual attributes (e.g. sex, size); 3) automatic identification of behaviours (e.g. provisioning young, aggression). In addition 4) we will establish a pipeline to process large volumes of video data, combining individual and behavioural identification. The project is based on exchanges between staff with different expertise, and on work conducted both in the lab and in field. These exchanges are expected to boost creativity and result in meaningful skills transfer and a strengthened collaborative network. The expertise and the methods developed will have a meaningful and lasting impact in the field of behavioural and wildlife biology, contributing to increase Europe’s competitiveness and attractiveness.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

HORIZON-TMA-MSCA-SE - HORIZON TMA MSCA Staff Exchanges

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) HORIZON-MSCA-2023-SE-01

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

ASSOCIACAO BIOPOLIS
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 174 800,00
Dirección
CAMPUS DE VAIRAO DA UNIVERSIDADE DO PORTO, RUA PADRE ARMANDO QUINTAS nº7
4485-661 Crasto
Portugal

Ver en el mapa

Región
Continente Norte Área Metropolitana do Porto
Tipo de actividad
Research Organisations
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Participantes (1)

Socios (2)

Mi folleto 0 0