Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Advancing Amino Acid Electrosynthesis through Integrated Active Site Design, Mechanistic Understanding, Free-Standing Electrode Fabrication, and Continuous Flow Cell Engineering

Ziel

Amino acids (AAs) are essential raw materials in the food and pharmaceutical industries. The global AA market was valued at around USD 28 billion in 2023, and is expected to reach around USD 63 billion by 2033. Traditional microbial and chemical processes involve lengthy reaction times, toxic reagents, and large centralized factories. In the context of carbon neutrality, electrosynthesis of AAs with small-scale devices is an ideal alternative to address these issues. However, current AAs electrosynthesis suffers from significant challenges: (1) A lack of comprehensive mechanistic understanding of the active sites-intermediates/target products correlation, leading to an insufficient theoretical foundation for catalyst design. (2) The absence of engineering-focused studies on optimizing efficient flow reaction cells and large-size cathodes limits the practical application at higher current densities.
This project aims to address these challenges through three key approaches: catalyst design, size effect-related mechanistic studies, and engineering of large-scale carbon cathodes and flow cells. Specifically: (1) Synthesize bimetallic active centers (Fe-Ni, Fe-Cu, Ru-Ni, Ru-Cu) with varying sizes, from single atoms to diatoms, clusters, and nanoparticles, for AA electrosynthesis. (2) Conduct mechanistic studies using in situ XAS and FT-IR to identify the true active sites and obtain reaction intermediates, to enhance understanding of reaction mechanisms and the important C-N coupling process, and further establish the intrinsic relationship between active sites, intermediate selectivity, and catalytic activity. (3) Develop large-size carbon electrodes via a self-assembly hydrogel strategy and a flow electrochemical cell system for continuous AA synthesis. This project will greatly expand the understanding of the structure-activity relationship, and guide the development of highly efficient AA electrosynthesis systems on a practical scale.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Koordinator

DANMARKS TEKNISKE UNIVERSITET
Netto-EU-Beitrag
€ 263 393,28
Adresse
ANKER ENGELUNDS VEJ 101
2800 Kongens Lyngby
Dänemark

Auf der Karte ansehen

Region
Danmark Hovedstaden Københavns omegn
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
Keine Daten