Projektbeschreibung
Geheimnis der Neutronensterne mithilfe von Gravitationswellen entschlüsseln
Neutronensterne gehören zu den dichtesten Objekten im Universum, doch ihr Inneres bleibt ein Rätsel. Neuere Theorien legen nahe, dass schwere Neutronensterne Quarkmaterie und möglicherweise sogar dunkle Materie enthalten könnten. Dank der Fortschritte bei Gravitationswellen-Observatorien wie LIGO verfügt die Wissenschaft nun über die Möglichkeit, den dynamischen Abdruck der Verschmelzung kompakter binärer Objekte zu untersuchen, was neue Einblicke in die Zusammensetzung der Neutronensterne zulässt. Das Team des innerhalb der Marie-Skłodowska-Curie-Maßnahmen unterstützten Projekts CosmicBells zielt darauf ab, diese Lücke anhand der Untersuchung, wie Gezeitenschwingungen bei Neutronensternen Gravitationswellensignale beeinflussen, zu schließen. Im Rahmen des Projekts werden modernste theoretische Methoden angewandt, um Gravitationsmoden-Oszillationen bei exotischen, mit Materie vermischten Neutronensternen vorherzusagen, was eine einzigartige Gelegenheit bietet, ihr geheimnisvolles Inneres zu erkunden.
Ziel
Neutron stars (NSs) are among the densest objects in our Universe, yet what constitutes their interior remains unanswered. Recent studies suggest the existence of quark matter inside the heaviest NSs, while there is growing speculation about the presence of dark matter inside them. In addition to state-of-the-art electromagnetic experiments like NICER, we are now, for the first time, able to observe the evolution of binary NSs using gravitational waves (GWs) as well. With the advancement of GW observatories like LIGO, and the upcoming third-generation detectors on the horizon, there is now a unique opportunity to explore NS composition through their dynamical imprint on GW signals from compact object (CO) binary mergers. Yet, most theoretical efforts are still focused on static properties of NSs, which are unable to provide detailed information on their composition. The CosmicBells project seeks to address this gap by answering the critical question: what can we learn about exotic matter inside NSs by observing the impact of tidal oscillations on the GW signals of CO binaries? As a Marie Curie Fellow I will achieve this goal by providing theoretical predictions on the properties of gravitational-mode (g-mode) oscillations in exotic matter admixed NSs using state-of-the-art field theoretical methods. I will also develop a few-body model to simulate the evolution of dynamically formed CO systems, focusing on the effect of g-mode tides. Working alongside Prof. Johan Samsing at the Niels Bohr Institute, I will be provided with the ideal research environment to carry out this project. The proposed research will present a novel method to study the impact of g-mode tides in CO systems, which might serve as beacons to pinpoint the existence of exotic matter in NSs.
Schlüsselbegriffe
Programm/Programme
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Aufforderung zur Vorschlagseinreichung
(öffnet in neuem Fenster) HORIZON-MSCA-2024-PF-01
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
HORIZON-TMA-MSCA-PF-EF -Koordinator
1165 Kobenhavn
Dänemark