Projektbeschreibung
Eine neue Ära der Quantensimulation
Der fraktionierte Quanten-Hall-Effekt (FQH-Effekt) ist ein einzigartiges Quantenphänomen, bei dem Elektronen, wenn sie extremen Bedingungen wie sehr niedrigen Temperaturen und starken Magnetfeldern ausgesetzt sind, neue Arten von Materie mit besonderen Eigenschaften bilden. Diese könnten die Quantentechnologie bereichern. Die Untersuchung von FQH-Zuständen in herkömmlichen Materialien wie Halbleitern, in denen sich Elektronen durch eine feste Struktur bewegen, gestaltet sich jedoch schwierig. Mit Unterstützung der Marie-Skłodowska-Curie-Maßnahme zielt das Projekt FQHMicroscope darauf ab, fermionische FQH-Zustände mittels eines hochmodernen Quantengasmikroskops zu untersuchen. Hierbei handelt es sich um ein Instrument, mit dem Forscher einzelne Atome sehen und manipulieren können. Ziel der Forschung ist es, die Grenzen der Quantensimulation zu erweitern und einen neuen Weg zur Untersuchung der topologischen Physik mit bisher unerreichter Präzision zu finden.
Ziel
Fractional quantum Hall (FQH) states are paradigmatic examples of strongly correlated topological quantum matter, combining geometric order and strong interparticle interactions. Yet, limited microscopic control in solid-state platforms often restricts observations to global current or spectroscopy probes. Engineered quantum systems, such as ultracold atoms in optical lattices, offer a complementary route for exploring topological order leveraging precise control over Hamiltonian parameters and access to local observables through quantum gas microscopy.
The primary goal of this project is to prepare and probe quantum-engineered fermionic FQH states for the first time in a next-generation quantum gas microscope. First, we will implement direct laser cooling of fermionic Li-6 atoms to efficiently prepare individual atoms in the ground state of optical tweezers, and holographically project lattice potentials to assemble Fermi-Hubbard systems atom by atom. To explore FQH physics, we will implement small fermionic Harper-Hofstadter systems via Floquet engineering. Leveraging our system’s excellent coherence, we will extend observations beyond two particles and perform first observations fractionally charged quasi-hole excitations pinned by local repulsive potentials. To access a broader class of fermionic FQH states, we will build upon recent advances in multi-orbital lattices and engineer p-wave interactions between pairs of spinless fermions. This approach will facilitate first microscopic studies of exotic Pfaffian states.
Our results will significantly impact research in quantum simulation and topological physics. Technically, we will advance programmable optical lattices, enabling sub-second cycle times and unprecedented levels of control in quantum gas microscopes. Implementing p-wave interactions will facilitate the exploration of Pfaffian states and non-Abelian excitations, which are building blocks for fault-tolerant topological quantum computing.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- NaturwissenschaftenNaturwissenschaftentheoretische PhysikTeilchenphysikFermion
- NaturwissenschaftenNaturwissenschaftenOptikMikroskopie
- NaturwissenschaftenNaturwissenschaftenOptikLaserphysik
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Programm/Programme
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Aufforderung zur Vorschlagseinreichung
(öffnet in neuem Fenster) HORIZON-MSCA-2024-PF-01
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
HORIZON-TMA-MSCA-PF-EF -Koordinator
3400 Klosterneuburg
Österreich