Description du projet
Comprendre la correspondance de Langlands à des dimensions supérieures
La correspondance de Langlands a joué un rôle crucial dans la résolution de nombreux problèmes mathématiques complexes. Il s’agit d’une série de prévisions mathématiques décrivant une relation profonde entre les mathématiques discrètes et continues, deux branches fondamentales qui sous-tendent le comptage, la théorie des nombres et l’analyse. Cependant, malgré de nombreuses avancées, la compréhension de la correspondance de Langlands demeure limitée. Soutenu par le programme Actions Marie Skłodowska-Curie, le projet LGModGal va développer un cadre permettant de mieux contrôler les espaces géométriques sous-jacents impliqués dans cette approche de la correspondance. En combinant la théorie des représentations et les techniques de géométrie algébrique, le projet permettra d’étudier la correspondance dans des dimensions supérieures à deux.
Objectif
The Langlands correspondence is a series of mathematical predictions describing a deep relationship between
two fundamental branches of mathematics: discrete mathematics, which is the basis of counting and number
theory, and continuous mathematics, which underlies analysis. These connections are incredibly powerful and have helped solve some of the most challenging problems in mathematics, such as Fermat's Last Theorem, which remained unsolved for nearly 400 years.
Despite significant advances over the past 30 years, much of this area remains unexplored. Recently, a new approach has emerged with the potential to revolutionise our understanding of the Langlands correspondence. The expectation is that this correspondence can be achieved via an interpretation of the analytic side as functions on geometric spaces which are built from basic objects on the discrete side—specifically symmetries of solutions to polynomial equations like Y²=X³+X+1. While it is speculated that this viewpoint will substantially simplify the problem, it is presently unclear how exactly these ideas should be implemented. A major issue is that the underlying geometry of these spaces are hard to control, rendering a precise interpretation as functions difficult.
My research has hinted that, through innovative combinations of techniques from algebraic geometry and representation theory, taming this geometry is within reach. In this project I will develop these ideas to produce a general framework which controls these spaces. Consequently, foundational results in the Langlands correspondence, currently limited to dimension 2, will be developed in higher dimensions, making inroads into one of the most important and enduring problems of modern number theory.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles mathématiques mathématiques pures géométrie
- sciences naturelles mathématiques mathématiques pures algèbre géométrie algébrique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) HORIZON-MSCA-2024-PF-01
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
E1 4NS LONDON
Royaume-Uni
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.