Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Local and global geometry of moduli spaces of p-adic Galois representations

Projektbeschreibung

Verständnis der Langlands-Korrespondenz in höheren Dimensionen

Die Langlands-Korrespondenz war für die Lösung vieler schwieriger mathematischer Probleme von entscheidender Bedeutung. Sie besteht aus einer Reihe von mathematischen Vorhersagen, die eine tiefgründige Beziehung zwischen diskreter und kontinuierlicher Mathematik beschreiben, zwei grundlegenden Zweigen, die das Zählen, die Zahlentheorie und die Analyse untermauern. Ungeachtet zahlreicher Fortschritte bleibt das Verständnis der Langlands-Korrespondenz jedoch begrenzt. Das Team des innerhalb der Marie-Skłodowska-Curie-Maßnahmen unterstützten Projekts LGModGal wird einen Rahmen entwickeln, der eine bessere Kontrolle der zugrunde liegenden geometrischen Räume zulässt, die bei diesem Ansatz der Korrespondenz beteiligt sind. Anhand der Kombination von Darstellungstheorie und Verfahren der algebraischen Geometrie wird das Projektteam die Korrespondenz in höheren Dimensionen als zwei untersuchen können.

Ziel

The Langlands correspondence is a series of mathematical predictions describing a deep relationship between
two fundamental branches of mathematics: discrete mathematics, which is the basis of counting and number
theory, and continuous mathematics, which underlies analysis. These connections are incredibly powerful and have helped solve some of the most challenging problems in mathematics, such as Fermat's Last Theorem, which remained unsolved for nearly 400 years.

Despite significant advances over the past 30 years, much of this area remains unexplored. Recently, a new approach has emerged with the potential to revolutionise our understanding of the Langlands correspondence. The expectation is that this correspondence can be achieved via an interpretation of the analytic side as functions on geometric spaces which are built from basic objects on the discrete side—specifically symmetries of solutions to polynomial equations like Y²=X³+X+1. While it is speculated that this viewpoint will substantially simplify the problem, it is presently unclear how exactly these ideas should be implemented. A major issue is that the underlying geometry of these spaces are hard to control, rendering a precise interpretation as functions difficult.

My research has hinted that, through innovative combinations of techniques from algebraic geometry and representation theory, taming this geometry is within reach. In this project I will develop these ideas to produce a general framework which controls these spaces. Consequently, foundational results in the Langlands correspondence, currently limited to dimension 2, will be developed in higher dimensions, making inroads into one of the most important and enduring problems of modern number theory.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) HORIZON-MSCA-2024-PF-01

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

QUEEN MARY UNIVERSITY OF LONDON
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 260 347,92
Adresse
327 MILE END ROAD
E1 4NS LONDON
Vereinigtes Königreich

Auf der Karte ansehen

Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten
Mein Booklet 0 0