Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Machine Learning-Enhanced Design of Homogeneous Bifunctional Catalysts for CO2 Hydrogenation

Projektbeschreibung

Intelligentere Katalysatoren für eine sauberere Zukunft

Die Reduzierung der CO2-Emissionen stellt eine große globale Herausforderung dar. Die Umwandlung von CO2 in Methanol stellt eine gute Möglichkeit für die nachhaltige Produktion von Kraftstoff und wichtigen Chemikalien dar. Während mit festen Katalysatoren für diese Umwandlung oft aggressive Bedingungen erforderlich sind und die Ergebnisse schlecht ausfallen, sind molekulare Katalysatoren in Lösung unter milderen Bedingungen aktiver. Die Erforschung neuer, wirksamer Katalysatoren kostet jedoch Zeit und Geld. Unterstützt über die Marie-Skłodowska-Curie-Maßnahmen wird dieser Prozess im Projekt BIFUCCO2 mit maschinellem Lernen beschleunigt, indem mehr als eine Million digital entworfene bifunktionale Katalysatoren gescreent werden. Durch die Kombination von Fachwissen in den Bereichen Informatik, Katalyse und Reaktionsmechanismen sollen im Rahmen des Projekts die besten Kandidaten ermittelt und validiert werden, um den Weg für sauberere und effizientere CO2-Umwandlungsmethoden zu bereiten.

Ziel

As a global society, we face the urgent challenge of reducing CO2 emissions. In response, governmental organisations, such as the European Union, have introduced policies promoting sustainable practices and renewable energy sources. One initiative is the conversion of CO2 into valuable products, with CO2-based methanol synthesis emerging as a promising approach. Methanol serves both as a low-density fuel and a feedstock for essential chemicals. While heterogeneous catalysts are commonly used in this reaction, they necessitate harsh conditions and exhibit low selectivity. Homogeneous catalysts, in contrast, operate at milder conditions and allow for fine-tuned active sites, potentially enhancing performance. Nevertheless, conventional methods for discovering new efficient catalysts are time-consuming and costly. BIFUCCO2 aims to overcome these limitations by leveraging computational techniques to pinpoint the most promising homogeneous bifunctional catalysts for this reaction from over a million in silico designed candidates. By implementing a machine learning (ML) workflow, the identification of the most efficient catalysts for this process will be achieved, enabling our experimental collaborators to validate the findings. The project merges the applicant’s knowledge in data-driven techniques, the proficiency of Res. Prof. Nova’s group in catalytic mechanisms (University of Oslo), the experience of Res. Prof. Balcells in ML applications (University of Oslo), and the expertise of Prof. Dr. Reiher (ETH Zürich, secondment) in chemical reaction networks, alongside contributions from experimental collaborators (Prof. Beller, LIKAT). BIFUCCO2 provides a framework for enhancing my existing research skills and acquiring novel insights from domain experts across various disciplines. The training activities during the grant period will significantly advance my professional career, consolidating my ability to lead a research group in the field of computational chemistry.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Die Klassifikation dieses Projekts wurde von Menschen validiert.

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) HORIZON-MSCA-2024-PF-01

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

UNIVERSITETET I OSLO
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 251 578,56
Adresse
PROBLEMVEIEN 5-7
0313 Oslo
Norwegen

Auf der Karte ansehen

Region
Norge Oslo og Viken Oslo
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Partner (1)

Mein Booklet 0 0