Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Meta-Learning of memristive devices for lifelong adaptation

Objectif

The continued growth of artificial intelligence (AI) in the cloud is driving up global energy costs. As a result, a paradigm shift is taking place where new intelligent devices are placed right at the edge. MALEFICENT will create a new framework for implementing sustainable AI at the edge using standard and novel technologies. Neuromorphic systems using emerging memory devices such as resistive switching devices (ReRAM) or ferroelectric capacitors (FeCap), are a promising alternative for AI systems thanks to their energy efficiency and non-volatility. However, the deployment of these devices in real-world applications poses some challenges, due to their intrinsic variability and limited bit precision. I will use advanced learning techniques such as meta-learning to create a self-adaptive neuromorphic system based on emerging memory devices able to exploit the intrinsic features of the devices while mitigating their limitations. I will then apply it to a real-world environment, such as robotics. This will have a significant impact on the research of emerging memory technologies, by opening up the possibility of exploitation in an industrial context.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Coordinateur

RIJKSUNIVERSITEIT GRONINGEN
Contribution nette de l'UE
€ 217 076,16

Partenaires (2)