Objective
The main objective of the SOLRESS project is to propose an integrated biorefinery system to replace the chemical origin of some of the most widely used solvents in the industry, such as ethyl acetate, ethyl lactate and butyl acetate with a bio-based origin from second generation sugars from post-consumer coffee grounds and lignocellulosic feedstocks. The aim is to reinforce the integration of bio-based research and innovation throughout industrial bio-based systems. Moreover, in the valorisation process of these feedstocks, not only the cellulose fraction will be valorised, but also the hemicellulose fraction to obtain 2 of the most notorious green solvents of today, 2-MeTHF and GVL, from an additional line dedicated to the processing of furfural. The challenges will lie in improving downstream purification (DSP) processes and the techniques employed to achieve a technology that is efficient and cost-competitive with current chemical production systems for solvents.
At the end of the project, all solvents will be validated in at least 3 of the most relevant applications (productive processes, formulations and recycling technologies) & at least 3 of the sectors with the greatest use of solvents (paints & coatings, cosmetics & materials processing) with the aim of evaluating its performance in comparison with its fossil-based counterparts, but also as a replacement for other dangerous and toxic solvents, such as NMP, CCL4, THF or toluene.
Thus, the ambition of the SOLRESS project is triple:
To replace the use of fossil, non-renewable raw materials with specific bio-based feedstocks in the production of some of the most widely used solvents.
Offer SSbD alternatives to controversial solvents in terms of danger & toxicity (including the ones under the SVHC & SoCs categories).
To improve the competitiveness of these processes by incorporating new methods & technologies that increase efficiency & sustainability, demonstrating their scalability & industrial applicability.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyenvironmental engineeringwaste managementwaste treatment processesrecycling
- engineering and technologymaterials engineeringcoating and films
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Programme(s)
Topic(s)
Funding Scheme
HORIZON-JU-IA - HORIZON JU Innovation ActionsCoordinator
46980 Paterna
Spain
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.