Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Third wave of AI: Neuro-symbolic AI and Large Language Models

Projektbeschreibung

Die Kombination von LLMs und neuro-symbolischer KI zur Revolutionierung von KI-Lösungen

In den letzten Jahren haben Fortschritte im Bereich der KI – insbesondere bei großen Sprachmodellen (large language models, LLMs) – diese Technologien ins Rampenlicht gerückt und ihren Einsatz in einer wachsenden Zahl von Anwendungsbereichen ermöglicht. Während LLMs zahlreiche Vorteile bieten, sind sie auch mit erheblichen Herausforderungen verbunden, darunter Sicherheitslücken, regulatorische und ethische Bedenken sowie das Risiko von Halluzinationen. Das über die Marie-Skłodowska-Curie-Maßnahmen unterstützte Projekt THIRDWAVE baut ein internationales, interdisziplinäres Netzwerk auf, um die LLM-gestützte neuro-symbolische KI voranzutreiben. Durch die Kombination der Stärken von LLMs mit symbolischer KI zielt THIRDWAVE darauf ab, Systeme zu schaffen, die zuverlässig, interpretierbar und domänenspezifisch sind. Diese Innovationen werden vertrauenswürdigen KI-Anwendungen in Medizin, Wissenschaft, Lebensmitteltechnologie, Geodaten und Bildung den Weg ebnen.

Ziel

Artificial Intelligence (AI) is transforming research, industry, and society, with Large Language Models (LLMs) playing a central role. While LLMs excel in natural language understanding, reasoning, and content generation, they also exhibit hallucinations, security vulnerabilities, ethical concerns, and regulatory issues. These challenges are particularly critical in healthcare and education, where accuracy, reliability, and fairness are essential. Addressing these shortcomings requires AI paradigms that enhance interpretability, robustness, and compliance.

THIRDWAVE aims to establish an international, interdisciplinary network to advance LLM-driven neuro-symbolic AI, integrating symbolic AI with LLMs to create interpretable, reliable, and domain-aware systems. This approach enables AI to leverage structured knowledge, improve decision-making, and comply with domain-specific constraints, making it more applicable to real-world challenges.

The project is structured around four key objectives: O1) Understanding LLMs: Analyzing capabilities and limitations to improve performance, usability, and trustworthiness. O2) Enhancing LLMs: Improving fairness, factual accuracy, and robustness through external knowledge sources and human collaboration. O3) Advancing LLM-driven Neuro-Symbolic AI: Developing hybrid systems that combine LLMs with symbolic reasoning for structured knowledge representation and better decision support. O4) Use Cases & Evaluation: Applying LLM-driven neuro-symbolic AI in healthcare, education, geodata, and food information engineering, validating scalability and societal impact.

By fostering collaboration among AI researchers, domain experts, and industry partners, THIRDWAVE will bridge the gap between data-driven and knowledge-driven AI, ensuring LLMs become interpretable, ethically aligned, and domain-aware. The project’s findings will inform AI regulation, advance research, and drive innovation, contributing to responsible AI development.

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-TMA-MSCA-SE - HORIZON TMA MSCA Staff Exchanges

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) HORIZON-MSCA-2024-SE-01

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 410 820,00
Adresse
WELFENGARTEN 1
30167 Hannover
Deutschland

Auf der Karte ansehen

Region
Niedersachsen Hannover Region Hannover
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Beteiligte (9)

Partner (8)

Mein Booklet 0 0