CORDIS - Forschungsergebnisse der EU
CORDIS

Bioceramics: Multiscale Engineering of Advanced Ceramics at the Biology Interface

Ziel

In the last decades, Materials Sciences and Life Sciences, two highly dynamically evolving and interdisciplinary research areas, have been influencing natural and engineering sciences significantly, creating new challenges and opportunities. A prime example for an increasing synergetic overlap of Materials and Life Sciences is provided by biomedical and bioengineering applications, which are of great academic, but also of steadily increasing societal and commercial interest. Bridging the traditional borders of disciplinary thinking in these areas has become one of today’s most challenging tasks for scientists. One group of key materials that are of great importance to biomedical engineering and bioengineering are advanced oxide and non-oxide ceramics with specific functionalities towards biological environments, so-called Bioceramics. The interplay at the interface of ceramics-protein-cells/bacteria is very complex and requires multiscale and interdisciplinary approaches. This expertise, that is under continuous development in my Bioceramics group, encompasses materials processing, shaping, surface functionalisation and cells/bacteria evaluation at the same time. The comprehensive research environment and expertise provides a unique opportunity to engineer materials/surfaces with immediate subsequent biological evaluation in order to achieve an extremely short development time. A centre of focus is the contribution of electrostatic and hydrophilic/hydrophobic interactions to the overall biocompatibility and -activity. The proposed research project includes four closely interrelated subprojects, addressing the following topics: “Interaction of surface functionalised ceramic particles with proteins”, “Cytotoxicity of functionalised oxide particles”, “Fabrication and testing of functionalised porous Al2O3 as filters for water cleaning and bioengineering applications” and “Novel functional scaffold composites for bone tissue engineering”.

Aufforderung zur Vorschlagseinreichung

ERC-2007-StG
Andere Projekte für diesen Aufruf anzeigen

Gastgebende Einrichtung

UNIVERSITAET BREMEN
EU-Beitrag
€ 1 536 120,00
Adresse
Bibliothekstrasse 1
28359 Bremen
Deutschland

Auf der Karte ansehen

Region
Bremen Bremen Bremen, Kreisfreie Stadt
Aktivitätstyp
Higher or Secondary Education Establishments
Hauptforscher
Kurosch Rezwan (Prof.)
Kontakt Verwaltung
Silke Reinold (Ms.)
Links
Gesamtkosten
Keine Daten

Begünstigte (1)