Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Exploring Ultra-Relativistic Outflows

Objective

Relativistic outflows appear in a wide variety of astrophysical sources, from Galactic micro-quasars to cosmological gamma-ray bursts (GRBs) and active galactic nuclei (AGN). In most cases the relativistic outflow is thought to arise from accretion onto a black hole, while neutron-stars are also known to produce relativistic outflows (either in the form of a steady wind or an impulsive ejection of plasmoids). Such relativistic outflow sources are thought to accelerate the highest energy cosmic rays, and are expected to be important sources of high-energy neutrinos and gravitational waves for upcoming detectors. Furthermore, they can probe strong field gravity, large densities and magnetic fields, and may have a strong effect on their environment. Thus, a good understanding of their physics can have many important implications. I plan to study several different aspects of ultra-relativistic outflows, which may help shed light on their underlying physics: (i) the acceleration of an impulsive highly-magnetized relativistic outflow, its interaction with the external medium, as well as the energy dissipation and emission mechanism within the outflow. These have been investigated so far mainly in quasi-steady state long-lived sources, and the differences for impulsive short-lived outflows is of great importance, and particularly relevant for GRBs; (ii) time dependent opacity effects in impulsive relativistic sources – they lead to different observed properties compared to quasi-steady state sources, and probes the emission site and the Lorentz factor of the outflow, and thus its composition (which is very poorly constrained); this is relevant to the prompt gamma-ray emission in GRBs, as well as to flares in Blazars, micro-quasars and GRBs; (iii) The stability properties of relativistic shocks – these develop is relativistic outflow sources and may effect their observed properties, but have not been investigated in much detail so far, as their Newtonian counterparts.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-4-3-IRG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

THE UNIVERSITY OF HERTFORDSHIRE HIGHER EDUCATION CORPORATION
EU contribution
€ 100 000,00
Address
COLLEGE LANE
AL10 9AB Hatfield
United Kingdom

See on map

Region
East of England Bedfordshire and Hertfordshire Hertfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0