Obiettivo
The objective of ARS was to develop improved algorithms for medium-size vocabulary speaker-dependent speech recognition in the presence of noise, and to build a real-time demonstrator. The demonstrator was to incorporate an isolated word noise-robust recogniser, verify algorithm performance, and address the problem of speech-based person-machine dialogue as a system interface in practical applications. The application environment chosen was the car.
The aim of the project is to extend the state of the art in speech recognition and to place this innovative technology in adverse environments such as car and factory floor. Starting from an established base of expertise, this project involves theoretical work on algorithms and the development of hardware prototypes. To get the best recognition performance, algorithms covering the different aspects of signal processing were considered. The activities were subdivided into 6 work packages concerning respectively system definition and standards, transducers and noise reduction, feature extraction, pattern processing, human factors and user interface, system prototyping and evaluation. After a brief presentation of the general structure of the project (objectives, organisation, participation, resources), this paper presents the state of the work after two years.
The objective of adverse environment recognition of speech (ARS) project was to develop improved algorithms for speech recognition in the presence of noise and to build a real time demonstrator. The demonstrator was to incorporate an isolated word noise robust recognizer, verify algorithm performance, and address the problem of speech based person machine dialogue as a system interface in practical applications.
The application environment chosen was the car. The system has a 100 word vocabulary, chosen by each national group of partners and tailored to the specific application environment. Advances were made in:
reduction, by signal preprocessing, of the effects of noise on speech signals;
feature extraction, to improve noise robustness;
study and refinement of algorithms for speech pattern matching in noisy environments;
speaker adaptation;
dynamic system adjustment to user feedback and the development of error correction strategies in the human interface;
development of system prototypes (hardware and firmware) for real time speech recognition.
The real time demonstrator was based on a general purpose digital signal processing (DSP) chip attached to a personal computer or a stand alone system. A multilingual database collected in noisy environments was made available and used for the evaluation of baseline systems. These were realized according to a common standard suitable for exchanging the software modules of the algorithms. Various algorithms were developed and evaluated and a set of algorithms for the final prototype were selected. A human machine interface concept was defined and the porting of the various models to the target system hardware was initiated.
The complete chain of processing has been initiated on a real time hardware; 2 demonstrators have been installed inside cars for assessment of their performance in real operating conditions.
The requirements included a 100-word vocabulary, chosen for each language group of partners and tailored to the specific application environment. Advances were needed in terms of:
- reduction, by signal preprocessing, of the effects of noise on speech signals
- feature extraction, to improve noise robustness
- study and refinement of algorithms for speech pattern matching in noisy environments
- speaker adaptation
- dynamic system adjustment to user feedback and the development of error correction strategies in the human interface
- development of system prototypes (hardware and firmware) for real-time speech recognition.
The system would be integrated in a real-time demonstrator based on a general-purpose DSP chip attached to a personal computer on a stand-alone system. Performance evaluations were first scheduled in the laboratory, using databases collected in noisy environments, to evaluate the resulting rate of correct recognition. Performance under field conditions were then to be assessed from a prototype fitted in a car and a laboratory system installed in a factory.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali informatica e scienze dell'informazione software
- scienze naturali informatica e scienze dell'informazione basi di dati
- ingegneria e tecnologia ingegneria elettrica, ingegneria elettronica, ingegneria informatica ingegneria elettronica elaborazione del segnale
- scienze sociali psicologia ergonomia
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Dati non disponibili
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Dati non disponibili
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Dati non disponibili
Coordinatore
10148 TORINO
Italia
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.